

April 18, 2016

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism Presented at CAREC Transport Sector Coordinating Committee 2nd Working Group in Bangkok (Thailand)

Traffic Demand Model for Corridor Projects in CAREC

Prof. Hironori Kato (The University of Tokyo) Dr. Ryuichi Shibasaki (NILM, Japan) Satoshi Tanabe (PADECO Co.)

Goals of Today's Presentation

- Introduction
 - Why is a model needed?
- Model Development
 - How have we developed the model?
- Case Studies with the Model
 - How can we apply the model to CAREC project?
- Conclusion

Introduction

Why is a model needed?

Transport and Trade Facilitation in CAREC

- For rail projects, the planning horizon is typically 50 to 100 years.
- Improvements in rail transport require the coordination of movements across borders and through neighboring countries.
- Coordination requires changes in procedures and management, and is therefore more difficult to achieve.

Importance of Prioritizing Projects

- Many proposed projects in CAREC
- But all of them may not be economically /financially supported.
- Investment projects should be prioritized for better transport and trade facilitation.

Source: ADB (2016)

How Can We Prioritize Projects?

- Projects with higher positive impacts should be prioritized.
- Impacts should be assessed from a viewpoint of cost-benefit.

How Benefit is Estimated?

- Benefit is estimated by comparing cases with and without projects.
- To estimate the benefit, traffic demands are required.
- Demand is forecasted • with a Traffic Demand Model.

What is the Traffic Demand Model?

- Given input data, the traffic demand is computed using the traffic demand model (TDM).
- There are various types of TDMs.

Model for CAREC Rail Demand Forecast

Two-stage Model

- 1. Economic Impact Model (GTAP)
 - Input: Socio-economic data
 - Output: trade patterns and economic impacts
- 2. Traffic Demand Model (MICS)
 - Input: OD trade volume and transport network
 - Output: Traffic flows in rail/road/maritime network

Advantage of Our Model

Road network is covered in addition to Rail

Competition between rail and road is incorporated.

Advantage of Our Model (Continued)

Worldwide network is considered

Trades through maritime network are also incorporated.

What Can We Do with the Model?

We CAN:

- Forecast future rail demand
- Assess rail development project with forecasted demand
- Prioritize projects based on assessment

They could contribute to facilitating consensusbuilding among stakeholders in CAREC.

Model Development

How have we developed the model?

Model Development

- The model was developed by a study team of the UTokyo since 2013.
 - The concept of model was originally proposed by Shibasaki *et al*. (2005).
- It has been revised through multiple projects of ADB, JICA, and UTokyo's research.
 - Latest model was developed in Tanabe, Shibasaki & Kato (2015).

Traffic Demand Model Structure

Transportation Network

 Based on ADC World Map, CAREC railway links data are added.

OD: 134 points Road : 16,398 links Railway : 3,026 links Ferry: 8 links

Railway access to the ports can be analyzed.

Model: Railway Capacity

- Both road and rail transportation networks are considered
- Freight forwarders are assumed to consider both transportation time and monetary cost (generalized cost) to choose a transportation mode and a route. $G_{ij} = C_{ij} + vt \cdot T_{ij}$
 - Consideration of railway capacity

The railway link cost function depending on traffic volumes

 T_R : Link Time (hour) L: Link Length (km) V: Link Speed (km/hour) Q: Link Flow (TEU/hour) C: Link Capacity (TEU/hour) β_1, β_2 : Parameter

Value of time

Data Used for Analysis

- Socio-economic data
 - population, skilled labor, unskilled labor, capital, natural resources, and expected GDP growth rate.
- LOS (Level of Service) of Shipping Network
 - Distance, speed, cost (freight charge), capacity, transshipment time, etc.
 - for maritime shipping, port, and land shipping
- Cargo Shipping Demand (OD Volume)
 - country-basis or more detail zone-basis trade demand
 - current and future

Model Accuracy

Export/Import Containers at ports (2013)

*Excluding empty containers

Result of Cargo Flow Simulation (2013)

Result of Cargo Flow Simulation (2013)

Case Studies

Application to CAREC projects

Case Studies

The developed model is applied to two cases:

- Case 1: Railway corridor extension along DRC 5
- Case 2: Incompletion of DRC 5 corridor development

Case 1: Railway corridor extension along DRC 5

Background :

- New railway links construction and capacity improvement are planned along DRC 5.
- This DRC is expected to provide better access to Arabian sea of CAREC members.
- Target year is 2030 in this analysis.

Assumptions

	Current Status	Future Scenario
Capacity	50, 62, 90 TEU /train	62, 90 TEU /train
Speed	20 km/h	20 km/h
Frequency	0, 5, 10 trains/week	10, 50 trains/week
Handling time at station	24 hours	24 hours
Operation Cost	1.0 USD/km	1.0 USD/km

* 12 shipping services are estimated to call at the Gwadar port.

Demand Estimation Results in Case 1

Case 1 : Railway corridor extension along DRC 5

Case 2 : Incompletion of DRC 5 development

Background :

- This DRC 5 is expected to provide better access to Arabian sea of CAREC members.
- New railway development and the Gwadar port development are expected to improve the accessibility of CAREC countries to global market.

Assumptions

- This case assumes the situation where the development of new railway link between Kashi in PRC and Islamabad in Pakistan has not been completed.
- This case also assumes that no container service call at the Gwadar port.

Demand Estimation Results in Case 2

Case 2 : Without railway between Kashi and Islamabad and the Gwadar port

Demand Estimation Results in Case Studies

Estimated Export/Import Container Volume from/to Other Countries Handled at Pakistani Ports in Each Case

*Central Asia is defined as Kyrgyz, Kazakhstan, Tajikistan, Turkmenistan, and Uzbekistan here. This follows the definition by data source of container trade volume.

Conclusion

Concluding Remarks

- Model analysis could contribute to facilitating consensus-building among stakeholders in CAREC.
- Traffic demand model was developed, which reproduces the observed traffic patterns well.
- The developed model is applied to two cases:
 ✓ Case 1: DRC 5 development
 - ✓ Case 2: Incompletion of DRC 5 development

Limitation of Current Model

- Model accuracy depends on data availability.
- Data about level of services and traffic flow are limited.
- We utilized the data integrated by Tanaka *et al.* (2014) for overcoming the limited data availability.

Location of borders with traffic data

Future Cooperation

Richer data enables us to analyze traffic flows with higher accuracy.

- LOS (Level of Service) of Shipping Network

 distance, speed, cost (freight charge), capacity, transshipment time, etc.
 - for maritime shipping, port, and land shipping
- Cargo Shipping Demand (OD Volume)
 - country-basis or more detail zone-basis
 - current and future

References

- Shibasaki, R., Ieda, H., Watanabe, T. (2005). An international container shipping model in East Asia and its transferability, *Research in Transportation Economics*, Vol.13, pp.299-336.
- Tanabe, S., Shibasaki, R., Kato, H. (2015) Impact assessment model of international transportation infrastructure development: Focusing on trade and freight traffic in Central Asia, *Asian Transport Studies*, Vol.4, No.1, pp.159-177.
- Tanaka, K., Tanabe, S., Shibasaki, R, Kato, H.(2014) Estimation of cross-border freight volumes at border crossing points in the Central Asia Regional Economic Cooperation Region, Paper presented at T-LOG 2014, Bangkok, 2014.

Thank you for your attention. If you have questions, please contact at kato@civil.t.u-tokyo.ac.jp.