

Road Asset Management Systems + Performance-Based Contracting

Session 2.1: Data Processing and Management

Serge Cartier van Dissel February 2020

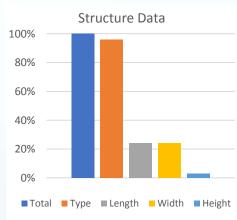
Day 1	Day 2	Day 3	
Road Asset Management System (RAMS)	Road Asset Management System (RAMS)	Performance Based Contracting (PBC)	
Session 1.1	Session 2.1	Session 3.1	
Introduction to RAMS	Data processing and	Introduction to PBCs	
	management		
Coffee break	Coffee break	Coffee break	
Session 1.2	Session 2.2	Session 3.2	
Functions of a RAMS	Data analysis	Performance standards	
	and planning		
Lunch	Lunch	Lunch	
Session 1.3	Session 2.3	Session 3.3	
Data to be collected	Road asset management	Inspections and Payments	
Coffee break	Coffee break	Coffee break	
Session 1.4	Session 2.4	Session 3.4	
Method of data collection	Conclusions and way forward	Conclusions and way forward	

Data processing and management

- Data is only useful if we can access it and analyse it
 - Data needs to be reliable
 - Data needs to be accessible
 - Combining of different data needs to be possible
- Data therefore needs to be:
 - Validated (checked for errors or issues)
 - Processed (right format, combining different data sources)
 - Managed (in a database)

Data validation

- Checking data for errors/inconsistencies
 - IRI value of 98.5 this is not possible and should be marked as an error
 - RoadLab roughness app records IRI=1 if speed is too low this should be recorded as no data rather than a very low roughness of IRI=1
- Validation to be carried out before data is uploaded into database
 - Based on raw data (or processed data)
 - May include auditing of sample of data
 - Complemented by automatic checks in database e.g. values within thresholds
- This is an important activity that is often given insufficient attention
 - Errors or problems in data can make the RAMS useless


Data processing

- Transforming data into the required format
 - Transforming data into a format that can be imported into the database
 - Transforming the units of the data
 - Transforming from m² to a percentage of the pavement surface
 - Sometimes automated in the database
- Importing data into a database
 - Making data ready for import
 - Preparing as a single CSV sheet with fixed columns
 - Some equipment can export data into a specific format
 - ROMDAS uses MS Access database
- All raw data should be kept and properly stored
 - If issues are found with processed data, raw data can be checked
 - Proper folder structure + backup system are needed

Example: Cambodia

- Rural Roads Information Management System (RRIMS)
 - Data collection by provincial departments 45,000 km
 - Data entry by different staff (working group of 25 people)
 - Limited time and responsibility
- Insufficient data validation and processing
 - Provinces used Excel sheets to send data data errors and format inconsistencies
 - Data was not always validated and instead imported directly into the RRIMS
- Database contained many errors and corrupted data
 - Data entered in wrong location (road width instead of pavement type)
 - Data entered in wrong format (e.g. centimetres instead of metres)
 - Data not according to defined categories (e.g. wrong spelling)
 - Data was often incomplete
 - Database did not include automatic checks of imported data
- Analysis of the data proved impossible
 - Data cleaning required first very costly (for out-of-date data)
 - Raw data not always recoverable
 - Data will need to be collected again 45,000 km

Example: Myanmar

- Road Data Bank (RDB) for trunk roads
 - 27,000 km surveyed using RoadRoid app and visual assessments
- Road data was only validated towards end of data collection
 - For much data the travel speed was too low to allow accurate IRI measurement
 - A lot of data had unrealistic IRI values
 - Only 16,800 km was found to have reliable IRI data
 - Over 10,000 km of IRI data was found to be unusable
- Although data validation was carried out and identified unreliable data, it was done too late in the process

Data management

- Data is entered into a database to facilitate access and combination of data
- Different complexities of database
 - Standard spreadsheet software (e.g. Microsoft Excel)
 - Standard database software (e.g. Microsoft Access)
 - Off-the-shelf road database software (e.g. HIMS, ArcGIS)
 - Custom-made road database software (often web-based)
- Start simple, gradually develop further
 - Using off-the-shelf software, find out what you want first
 - Later upgrade as needed

Database software

Software type	Advantages	Disadvantages	Examples
Standard spreadsheet (MS Excel or similar)	 Inexpensive Easy to operate Software often available Support widely available Simple interface possible 	 Limited functionality Need to develop structure 	 Nepal (РТМР) Kyrgyz (СУДА)
Standard database (MS Access or similar)	InexpensiveSupport widely availableSimple interface possible	 Limited capacity Need to develop structure 	 Bangladesh (RSDMS) Solomon Islands (SITAMS) Tajikistan (HMS)
Off-the-shelf road database software	Can be less expensiveSupport widely available	Not always suitableLimited functionalityLanguage issues	 Georgia (ArcGIS) Cambodia trunk (HIMS)
Custom-made database software	Adjusted to needsIn own language	ExpensiveLimited support	 Myanmar (RDB) Timor-Leste (ESTRADA) Azerbaijan (RDBAze) Pakistan (RMS) Cambodia rural (RRIMS)

Database use

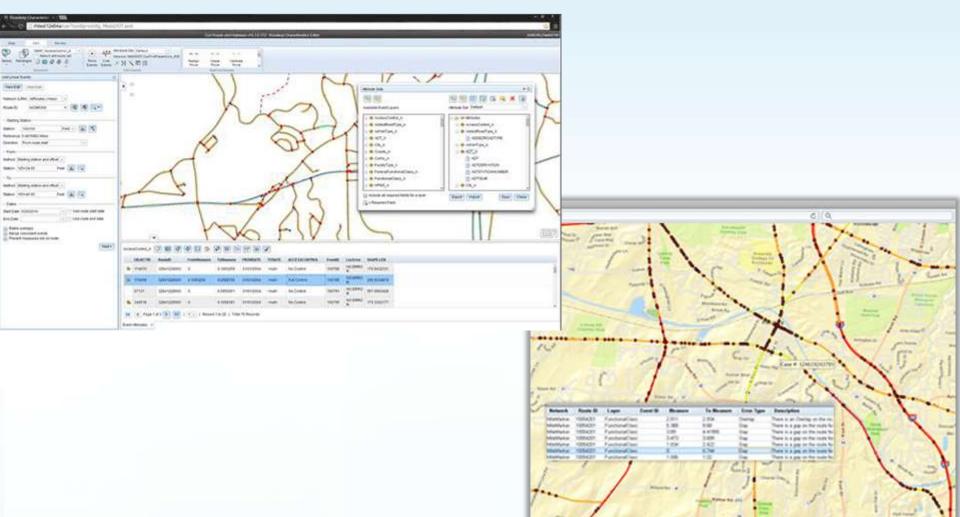
- Skill requirement
 - Is the software easy to use or only useable by trained staff
 - How feasible is it to train staff and retain them?
- Language
 - Is the database software available in a local/regional language?
 - Is it possible to have a local language interface?

Database access

- Remote access central server
 - Does the database only work as a standalone desktop software?
 - Requires sharing and merging of database copies
 - Can it be accessed remotely by multiple users?
 - Central server within local area network (LAN)/wide area network (WAN)
 - Online access through internet
- Does the software allow for differentiated user rights?
 - Technical operators data entry and editing
 - Road entity users data viewing and exporting
 - Public users limited data viewing

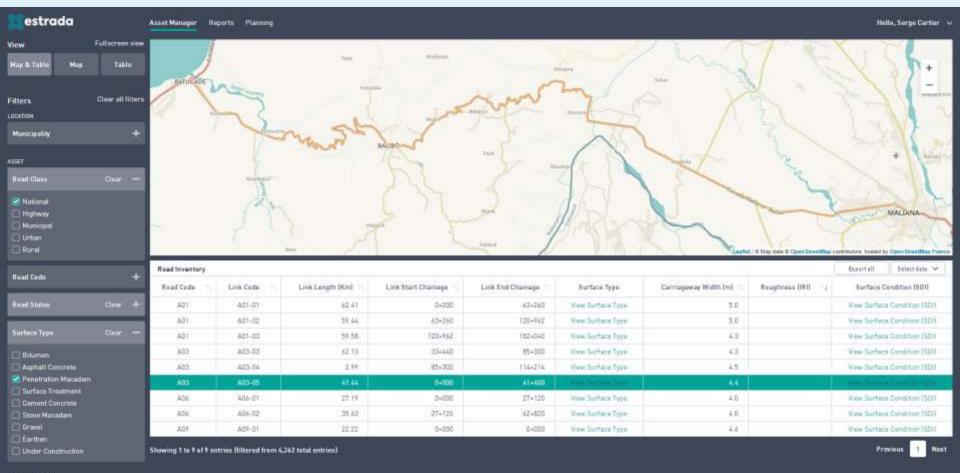
Data identifier

- Databases need unique identifiers for data sets
 - For roads use is made of road codes
 - Road names not unique + problems with spelling
- Road code needs to reflect
 - Administrative class
 - Road number
 - Link number (for link code)
- Codes for bridges and other structures
 - To include road code (important to know what road a structure is in)
 - Letter to indicate the type of structure (e.g. "B" for bridge)
 - Numbering preferably in sequence of chainage
- Exact format of code can be varied, but has to be used consistently
 - In database
 - In contracts


Database functions

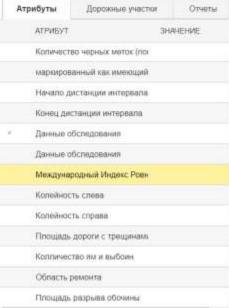
- Related to functionality of the RAMS
- Database functions
 - Search/select data (multiple filters)
 - Show selected data (tables, graphs and maps)
 - Export data (generally as tables to PDF or CSV format, also as maps)
 - Standard reports (sets of agglomerated data for certain road types)
 - Calculate statistics and key performance indicators

CAREC Example: Georgia

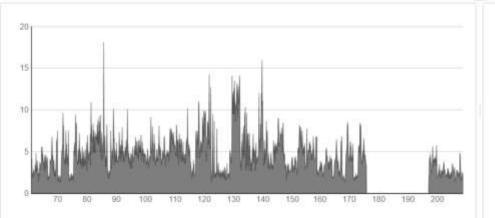

• Off-the-shelf software (ArcGIS Roads and Highways)

CAREC Example: Timor Leste

Custom-made database (under development)


ASSET CONDITION

Surface Condition (SDI)



CAREC Example: Kyrgyz

Custom-made database (under development)

Database development

- Database development has to go hand-in-hand with data collection
- Do not develop the database before collecting any data
 - Problems in Timor Leste
- Do not collect all the data before developing the database
 - Problems in Myanmar
- Apply a stepwise approach
 - Collect data for a portion of the road network(s) to be included in the database
 - Check and validate the data collection
 - Develop and test the database
 - Collect the data for the rest of the network(s)
 - Complete database development and testing

Group Work

- Who will validate and process data?
- Who will manage and operate the database?
- What type of database do we need (initially)?
- Who should be able to access data and how?
- What in-house skills do we need?