How to Investigate a Suspect Case of Infectious Disease

Diagnosis of Equine Infectious Diseases

Prof. Wang Xiaojun

Harbin Veterinary Research Institute, CAAS, China

Harbin Veterinary Research Institute, CAAS, China

- State Key Laboratory of Veterinary Biotechnology
- National High-level Biosafety Laboratory for Animal Disease Prevention and Control
- National Avian Influenza Reference Laboratory
- National Bovine Infectious Pleuropneumonia Reference Laboratory
- National Glanders Reference Laboratory
- National Reference Laboratory for Equine Infectious Anemia

- FAO Animal Influenza Reference Center
- OIE Avian Influenza Reference Laboratory
- OIE Reference Laboratory for Equine Infectious Anemia
- OIE Infectious Bursal Disease Reference Laboratory
- OIE Asia-Pacific Zoonoses Collaboration Center

Research Directions of the State Key Laboratory of Veterinary Biotechnology

Comparison with SCI articles of similar high-level research institutions abroad (2011-2015)

	Status and influence	No. of articles	Frequency of citations by others	H-index
State Key Laboratory of Veterinary Biotechnology (SKLVB)	Excellent State Key Laboratory	397	1630	14
Cornell University School of Veterinary Medicine (CVM, Cornell University)	No. 1 in the U.S. Veterinary Specialty	134	433	10
USDA National Animal Disease Center (NADC , USDA)	U.S. disease prevention and control authority	14	86	6
Pirbright Institute, UK	The world's leading veterinary institute	385	2683	23
Australian Animal Health Laboratory (AAHL)	The world's top biosafety research institute	212	1280	14

Innovative Engineering Training Teams-6 Excellent Teams

Harbin Veterinary Research Institute, CAAS Equine infectious disease and lentiviral disease research team

State Key Laboratory of Veterinary Biotechnology
National Glanders Reference Laboratory
National Reference Laboratory for Equine Infectious Anemia

OIE Reference Laboratory for Equine Infectious Anemia

Member of Equine Infectious Disease and Lentiviral Disease **Research Innovation Team**

Basic Research

Applied Research

Chief Scientist

Du Cheng Associate Researcher

Wang Xiaojun

Researcher

EIAV

Ne Lei Associate Research er

EIAV

Lin Yuezhi Associate researcher

EIAV

Wang

Xuefeng

Associate

Researcher

EIAV

Guo Wei Associate Researcher

Flu

Liu Didi Associate Researcher

EHV

Hu Zhe Associate Researcher vaccine diagnosis

Qi Ting Associate Researcher Flu EAV

Sun Like Assistant Researcher

Flu

Zhang Haili Associate Researcher

Flu

Wang Xiaojun Bio

Education	Born in Inner Mongolia in 1974, researcher, doctoral supervisor
1992-1996	Bachelor of Veterinary Medicine, Inner Mongolia University for Nationalities
1996-1999	Master of Infectious Diseases and Preventive Veterinary Medicine, Graduate School of Chinese Academy of Agricultural Sciences,
2000-2003	Infectious Diseases and Preventive Veterinary Medicine, Graduate School of Chinese Academy of Agricultural Sciences, PhD
Work	
experience	
1999-2005	Assistant Researcher, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences
2005-2010	Postdoctoral Fellow, Department of Microbiology and Molecular Genetics, Michigan State University, USA
2010-	Researcher, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Chief Expert of Equine Infectious Diseases and Lentivirus Research and Innovation Team
Research direction	Since 1999, he has been committed to the research of lentivirus and equine infectious diseases

Equine Infectious Disease and Lentiviral Disease Research Innovation Team

Research Direction:

Study on the interaction between virus and host innate immunity Lentivirus, influenza virus

1. Study on the pathogenicity and immune mechanism of equine infectious diseases

Influenza virus, equine-borne anemia virus

2. Research on Epidemiology and Application Technology of Prevention and Control of Important Infectious Diseases of Equine

Laboratory Disease Surveillance and Technical Support

- National Equine Disease Surveillance and Control
- Construction of an epidemic-free area
- Elimination of glanders
- Intensive donkey farm service
- Pathogen identification and traceability

Classification of Equine Diseases

O Internal diseases

© Surgical Diseases

O Infectious Diseases

Infectious Diseases

Fundamental Characters

same pathogen.

Key Factors of Infectious Diseases

An animal capable of excreting pathogens (usually bacteria and virus) from the outside world. Air droplets; Water, food; Contact transmission; Vector-borne transmission; Soil-borne transmission ; Blood-feeding insects; Latrogenic transmission; Vertical transmission; Respiratory transmission; Sexual transmission;

...

Healthy animals with a high susceptibility to certain pathogens

Pathogens of Equine Infectious Diseases

Virus

Bacteria

Fungus

Infectivity

Equine viral diseases

- Equine infectious anemia
- Equine influenza
- Japanese encephalitis
- Equine viral arteritis
- Equine rhinopneumontis
- African horse sickness
- Equine encephalomyelitis
- Equine rhinovirus infection
- Equine organic encephalopathy virus

- Parainfluenza type 3 virus infection
- Equine vesicular stamatitis
- Horsepox
- Equine adenovirus infection
- Equine papilloma
- Equine parvovirus infection
- Hendra disease
- Nipa disease
 - West Nile

•

- Venezuelan equine encephalitis
- Borna disease
- Equine coronavirus infection

Equine bacterial and fungal diseases

- Equine adenitis
- Equine Salmonella
- Anthrax
- Epizootic lymphangitis
- Glanders
- Tetanus
- Dermatomycosis
- Equine contagious pleuropneumonia
- Contagious equine metritis
- Foal rhodococcus pneumonia
- Melioidosis
- Pasteurellosis
- Listeriosis

- Equine staphloccosis
- Corynebacteriosis
- Botulism
- Malignant edema
- Equine necrobacillosis
- Actinomycosis
- Cryptococcosis
- Coccidiomycosis
- Ulcerative lymphangitis
- Penicilliosis marneffei
- •

Respiratory transmission

Cough + Runy nose \rightarrow Air droplets

Respiratory transmission

Equine influenza

Equine rhinopneumontis

Equine viral arteritis

Sexual transmission

Equine viral arteritis

Equine infectious anemia

Salmonella equine abortion infection

Dourine

Equine rhinopneumontis

Contact transmission

Glanders

Equine adenitis

Equine viral arteritis

Blood borne / insect transmission

Equine infectious anemia

Equine encephalomyelitis

Eastern equine encephalitis virus, EEEV;

Western equine encephalitis virus, WEEV ;

Venezuelan equine encephalomyelitis virus, VEEV

Clinical symptoms

Abortion

Equine viral arteritis

Equine Parvovirus Infection

Equine hepersvirus I infection

Salmonella equine abortion infection

Neurological symptoms

Equine encephalomyelitis

Eastern equine encephalitis virus, EEEV; Western equine encephalitis virus, WEEV ; Venezuelan equine encephalomyelitis virus, VEEV.

Nervous disorders, including restlessness and shifting of weight from leg to leg

Dourine

Facial nerve numbness

Equine rhinopneumontis

Tetanus

Clinical signs

Equine influenza

Incubation period 3-7 days. The course of the disease is 5-30 days

✓ Fever

- ✓Dry cough
- ✓Running nose
- ✓ Depress, muscle soreness
- ✓ Reluctant to eat or drink
- ✓ Highly contagious
- ✓Infect horses of any age

Differential diagnosis

Equine contagious bronchitis

Equine rhinopneumontis

Equine rhinopneumontis

Incubation period of several days – months. Course of disease 5-60 days

Caused by three distinct alphaherpes viruses, equine herpesvirus 1 (EHV-1), equine herpesvirus 4 (EHV-4), and equine herpesvirus 3 (EHV-3).

 Congestion and clear nasal discharge
 Mild to server ataxia or paresis (slight of incomplete paralysis) of hind quarters

3. Fever for two to three days

4. Cough

5.Abortion after three to 12 weeks of exposure and most commonly in the 8th to 11th month of gestation.

Equine Infectious Anemia (Coggins' Disease)

Incubation period 10-40 days Lifetime infection

- 1. High fever
- 2. Difficult breathing
- 3. Cardioacceleration, debility
- 4. Anemia.

Differential diagnosis

Surra (Istone trypanosomiasis) Equine piroplasmosis Equine leptospirosis Nutritional anemia

Tetanus in horses

Incubation period 7-10 days Course 4-6 weeks

- 1. Inability to open mouth to eat and drink
- 2. Eyes wide open and ears rigid
- 3. Stiffness and rigidity of the entire body
- 4. Extreme sensitivity to sounds, sights, and touch
- 5. Third eyelid closes uncontrollably
- 6. (One way to distinguish tetanus from other neurological diseases is to clap your hands and watch the third eyelid. It will close uncontrollably.)
- 7. Convulsions and death in 75 to 80 percent of cases.

Glanders

Incubation period several days – months. Course of diseases varies.

Glanders is an infectious disease that is caused by the bacterium Burkholderia mallei. While people can get the disease, glanders is primarily a disease affecting horses. It also affects donkeys and mules and can be naturally contracted by other mammals such as goats, dogs, and cats.

- Chronic nasal discharge from one or both nostrils, with or without visible ulceration of the nasal septum;
- Chronic enlargement and hardening of the submaxillary lymph glands without outward discharge of pus;
- Presence of pustules and ulcers (farcy buds) on the skin of the hindlegs or other parts of the body.
- Nonclinical, or latent, cases are essentially pulmonary in type, and the lesions remain in a concealed state (occult) in the lungs as tubercle-like nodules and suppurating foci.

Salmonella equine abortion infection

1. Abortion often occurs in the second and third trimesters of pregnancy.

2. Before abortion, there are many signs, such as fever, breast swelling, vaginal bleeding with color liquid.

3. Most miscarriages are stillbirths and sepsis.

Incubation period several days – months, continuous infection

Strangles

- ✓ Quickly go off their feed
- ✓ Fever (39.4-41.1C)
- Wet cough with raspy, strained breathing
- Significant swelling between the lower jaw bone that may extend behind the cheekbone and along the sides of the face
- Produce copious greenishyellow mucus

Incubation period several days - months Course of the disease is more than 3 weeks

Factors to be considered for an infectious disease

Factors to be considered for an infectious disease

Clinical Diagnosis

Disease and Time Course

- ✓ Seasons
- ✓ Transmitting speed
- ✓ Recover/Death
- \checkmark New member in the group
- ✓ Travel

Disease progress and Space

- Geographical environment
- Affected animals
- Wide animals
- Insect

Laboratory Diagnosis

Serological diagnosis

✓ Serum

- ✓ Specific antibody
- ✓ Specific reagents /tests
- ✓ Known after infection
- ✓ Verification of infection/Immunity

Pathogenic diagnosis

- Blood samples, secreta, tissue
- Pathogen identification
- Specific reagents /tests
- In time

Common equine disease serological testing methods (recommended)

疫病名称↩	检测项目↔	检测方法↩	确认方法↩
马传贫↩	抗体↩	cELISA↩	琼扩试验↩
马动脉炎↩	抗体↩	ELISA⋳	中和试验↩
马流感↩	抗体↩	HI 试验↩	$\overline{\Box}$
马鼻疽↩	抗体↩	补反试验↩	\subset
日本脑炎↩	抗体↩	ELISA←	\subset
马梨形虫病 努巴贝斯虫⇔	抗体↩	ELISA←	\leftarrow
马梨形虫病马泰勒虫↩	抗体↩	ELISA←	\leftarrow
马媾疫⇔	抗体↩	ELISA←	中和试验↩
伊氏锥虫病↩	抗体↩	CATT 卡片凝集↩	
狂犬病⇔	抗体↩	ELISA⋳	\Box
炭疽↩	抗体↩	沉淀反应↩	\Box
马鼻肺炎 型疱疹病毒⇔	抗体↩	ELISA⋳	中和试验↩
马鼻肺炎 IV 型疱疹病毒↔	抗体↩	ELISA←	中和试验↩
非洲马瘟↩	抗体↩	ELISA←	\leftarrow
西尼罗河病↩	抗体↩	ELISA←	\leftarrow

Nucleic acid detection methods (partial)

亨德拉病↩	核酸↩	qRT−PCR←⊐	测序↩
尼帕病毒病↩	核酸↩	qRT−PCR←⊐	测序↩
水泡性口炎印第安型↩	核酸↩	qRT−PCR←⊐	测序↩
水泡性口炎新泽西型↩	核酸↩	qRT−PCR←	测序←
马脑脊髓炎(东方)↩	核酸↩	qRT−PCR←⊐	测序↩
马脑脊髓炎 (西方) ↩	核酸↩	qRT−PCR←	测序←
马传染性子宫炎↩	核酸↩	qRT−PCR←	测序←
委内瑞拉马脑脊髓炎↩	核酸↩	qRT−PCR←	测序←
日本脑炎病毒↩	核酸↩	qRT−PCR↩	测序↩
西尼罗河病毒↩	核酸↩	qRT−PCR←⊐	测序↩
马流感病毒↩	核酸↩	qRT−PCR 和 RT−PCR↩	测序↩
马梨形虫病 努巴贝斯虫⇔	核酸↩	巣式 PCR←	测序↩
马梨形虫病马泰勒虫↩	核酸↩	巣 式 PCR↩	测序↩
伊氏锥虫病↩	核酸↩	普通 PCR←	测序↩

Professional Support

Knowledge and expertise

Equipment and rapid diagnosis

Specialized laboratory

Key laboratory diagnostic technologies and products

马属动物(马、驴)主要传染病检测试剂盒明细表

编号	马传染病病名	试剂盒名称
1		马传染性贫血病毒 cELISA 抗体检测试剂盒
2		马传染性贫血琼脂试验抗原、阳性与阴性血清试剂盒
3	马传染性贫血	马传染性贫血抗体胶体金检测卡
4		马传贫病毒荧光 PCR 检测试剂盒-A 版(探针法)
5		马传贫病毒荧光 PCR 检测试剂盒-B 版(探针法)
6		H3N8 亚型马流感 HI 试验抗原和阴阳性抗体
7		马流感竞争 ELISA 抗体检测试剂盒
8	1 1 1 1 1 1 1 H	马流感病毒一步法 RT-PCR 检测试剂盒
9	与流行性感冒	马流感病毒一步法荧光 RT-PCR 检测试剂盒(探针法)
10		马流感病毒一步法等温快速扩增试剂盒 (重组酶法)
11		马流感病毒 AC-ELISA 抗原检测试剂盒
12	T al al de	马动脉炎病毒一步法荧光 RT-PCR 检测试剂盒(探针法)
13	与切脉炎	马动脉炎病毒一步等温快速扩增试剂盒 (重组酶法)
14	0	I型马疱疹病毒荧光 PCR 检测试剂盒(探针法)
15	马鼻肺炎	IV 型马疱疹病毒荧光 PCR 检测试剂盒(探针法)
16		马疱疹病毒 1/1V 型单管双重荧光 PCR 检测试剂盒(探针法)
17		日本脑炎 RT-PCR 检测试剂盒
18	日本脑灾	日本脑炎 RT-LAMP 检测试剂盒(可视化)
19	亨德拉尼帕病毒属	亨德拉尼帕病毒属一步法荧光 RT-PCR 检测试剂盒(探针法)
20	नीर राग्री गी. नई	非洲马瘟病毒一步法荧光 RT-PCR 检测试剂盒(探针法)
21	非而与强	非洲马瘟病毒一步法等温快速扩增试剂盒(重组酶法)

Equine disease detection kit

22		马梨形虫(马泰勒虫)竞争 ELISA 抗体检测试剂盒
23		马梨形虫(驽巴贝斯虫)竞争 ELISA 抗体检测试剂盒
24		马梨形虫(马泰勒虫)抗体胶体金检测卡
25	马梨形虫病	马梨形虫 (驾巴贝斯虫) 抗体胶体金检测卡
26		马梨形虫(马泰勒虫和骛巴贝斯虫)PCR 检测试剂盒
27		马梨形虫(马泰勒虫)荧光 PCR 检测试剂盒
28		马梨形虫(驽巴贝斯虫)荧光 PCR 试剂盒
29		马梨形虫(巴贝斯虫和鹙巴贝斯虫)双重荧光 PCR 试剂盒
		马流产沙门氏菌间接 ELISA 抗体检测试剂盒
30		马流产沙门氏菌 cELISA 抗体检测试剂盒
31	1	马流产沙门氏菌抗体胶体金检测卡
33	马流产沙门氏国病	马流产沙门氏菌 PCR 检测试剂盒
34		马流产沙门氏菌荧光 PCR 检测试剂盒(探针法)
35		马流产沙门氏菌等温快速扩增试剂盒 (重组酶法)
36	马腺疫	马、驴腺疫 PCR 检测试剂盒
37	伊氏锥虫病	伊氏维虫 PCR 检测试剂盒

Laboratory diagnosis of equine infectious anemia

2.4 实验室诊断

2.4.1 马传贫琼脂扩散试验(AGID) (见附件)。

2.4.2 马传贫酶联免疫吸附试验(ELISA)(见附件)。

2.4.3 马传贫病原分离鉴定(见附件)。

2.4.4 结果判定

具备马传贫流行特点、临床症状、病理变化,可做出初步诊断;

2.4.1 或 2.4.2 或 2.4.3 结果阳性,即可确诊。

New Generation of AGID kit by HVRI Precipitation line can appear in 12 hours, which is better than similar international kits

24 hours

48 hours

Key technical support

Need for more accurate, sensitive, and faster diagnostic methods

outdated

There is an urgent need for sensitive, accurate, highthroughput, and key detection technologies

Successfully established a cELISA kit for horse-borne anemia

Advantage:

- Fast
- High throughput
- Good specificity
- High sensitivity

Successfully developed cELISA rapid detection kit

Internationally loading

Equine infectious anemia antibody cELISA detection kit

PATENT, ZL201410239152.7 *Appl Microbiol Biotechnol*. 2014

internationally leading	
Accurate: no false positives	Test 500 samples
Sensitive: 8 times higher than	•
AGID	
Fast: 1.5 hours to complete	AGID required: /
High throughput: 500	days
samples per person	cELISA takes: 2
International verification :	hours
 Spain 	
 National Institute of Virology 	Dotaction rate
of Argentina	
 Hong Kong Agriculture and 	increased by 132%
Fisheries Department	
 Dubai OIE Equine Disease 	
Dabai OIL Lyuine Disease Deference Leberatory	

Standard Reference Positive Serum Test

Method	Kit	VMRD Anti-EIAV		
Meulou		Strong	Medium	Weak
	HVRI	+	+	+
CELISA	Inhibition Rate	99.39%	88.42%	67.45%
AGID	IDEXX	-	-	-
cELISA	IDEXX	-	-	-
Western blot	1000 dilution of serum	-	and and	-

International Comparison Proves Advanced Technology

No.	Sample ID	Store No.	Harbin-ELISA	AGID	Idexx-ELISA	Eradikit-ELISA
158	SE 15/20	S135-58	Negative	Negative	Negative	Positive
159	SE 17/20	S136-9	Negative	Negative	Negative	Positive
160	SE 91.2/20	S09-39	Negative	Negative	Negative	Doubtful
161	SE 135.1/20	S06-2	Negative	Negative	Negative	Doubtful
162	SE 211.14/20	S08-58	Negative	Negative	Negative	Doubtful
163	SE 284.2/20	S10-45	Negative	Negative	Negative	Positive
164	Muneca		Positive 98.1%	Positive	Positive	Positive
165	EQC 17/7839		Positive 99.1%	Strong Positive	Positive	Positive
166	EQC 17/7840	1.00	Negative	Negative	Negative	Negative
167	EQC 17/7841	-	Positive 99.4%	Positive	Positive	Positive
168	IdVet Ref.sera Neat	-	Positive 98.6%	Positive	Positive	Positive
169	IdVet Ref.sera 1:4	12	Positive 90.5%	Negative	Negative	Positive

True Negatives: 163 (equine samples); 1 (EQC Negative)

Specificity	
Harbin ELISA	100%
AGID	100%
Idexx ELISA	100%
Eradikit ELISA	77.30%

True Positives: 1 (Field case); 2 EQC (positive); 2 (Reference sera) Sensitivity

and the second	
Eradikit ELISA	100%
Idexx ELISA	83.30%
AGID	83.30%
Harbin ELISA	100%
Sensitivity	

CENTRAL VETERINARY RESEARCH LABORATORY, DUBAI, UAE

The comparison of the OIE reference laboratories of Argentina, the Hong Kong **Agriculture and Fisheries** Department, and the World **Organization for Animal** Health in Dubai proved that the indicators of this method are better than those of similar international products.

Rapid Colloidal Gold Test Strip

- Accuracy: equivalent to the AGID gold standard
- Sensitivity: equivalent to cELISA
- Fast: Results in 10 minutes
- A drop of blood test
- No training required

Specialized Laboratory

Harbin Veterinary Research Institute
State Key Laboratory of Veterinary
Biotechnology
National Glanders Reference Laboratory

National Equine Infectious Anemia Reference Laboratory

OIE Reference Laboratory for Equine Infectious Anemia

Summary

Discover clinical		Segregation once	Strengthen the
sign in time	Rapid diagnosis	infectious disease	prevention and control
		happened	of infectious diseases

Thank you for your attention !

Wang Xiaojun wangxiaojun@caas.cn 0451-51051749