

Road Asset Management Systems + Performance-Based Contracting

Session 1.3: Data to be Collected

Serge Cartier van Dissel February 2020

Day 1	Day 2	Day 3	
Road Asset Management System	Road Asset Management System	Performance Based Contracting	
(RAMS)	(RAMS)	(PBC)	
Session 1.1	Session 2.1	Session 3.1	
Introduction to RAMS	Data processing and	Introduction to PBCs	
	management		
Coffee break	Coffee break	Coffee break	
Session 1.2	Session 2.2	Session 3.2	
Functions of a RAMS	Data analysis	Performance standards	
	and planning		
Lunch	Lunch	Lunch	
Session 1.3	Session 2.3	Session 3.3	
Data to be collected	Road asset management	Inspections and Payments	
Coffee break	Coffee break	Coffee break	
Session 1.4	Session 2.4	Session 3.4	
Method of data collection	Conclusions and way	Conclusions and way	
	forward	forward	

- A RAMS requires data
 - The data needs to be up-to-date (depends on type of data)
 - The data needs to be complete (entire network)
 - The data needs to cover the data types required for the function of the RAMS
 - The data needs to be reliable
 - The data needs to be sufficiently accurate for the function of the RAMS

Data collection

- Data collection is one of the weakest parts of any RAMS
 - Data collection costs money, time
 - New technologies reduce data collection costs
 - Automated traffic counters
 - Automated pothole and crack identification
 - Lidar
 - Smartphone applications
- RAMS with missing/outdated data becomes useless
 - Especially condition data quickly becomes outdated

Data collection

- Keep data collection to a minimum
 - Avoid high data collection costs
 - <u>Do not</u> collect data unless you expect to use it
- Some data can be collected at no/little extra cost
 - Example: video data together with IRI survey data
 - Data processing still has a cost
- Balance data needs with collection costs

Network vs Project data

- RAMS is a network planning tool (general data for entire network)
 - Identify general needs and related costs
 - Prioritize allocation of available budget to specific roads or links
 - Propose future maintenance, rehabilitation and upgrading projects
 - Requires data for entire (sub-)network
 - Limit data to be collected to avoid high costs
 - Data collection may become more detailed as RAMS evolves and data collection technologies improve and become less costly
- Different from project planning (detailed data for few roads)
 - Project road (link) selected through network planning
 - Project preparation requires data only for the project road (link)
 - Requires more detailed data specific to the project
 - Collecting project data for entire network would be very costly much of the data would not be used (only for project road links)

Data Accuracy

- More accurate data costs more to collect
 - More accurate data does not necessarily improve the results
 - IRI data can be collected through smartphone or laser profilometer
 - Technology improvements make more accurate data less expensive

• Information Quality Level (IQL)

- IQL 1 = Research
- IQL 2 = Detailed programme, project-level engineering (laser profilometer)
- IQL 3 = Detailed network-level planning (bump integrator)
- IQL 4 = General network-level planning, pavement performance (smartphone, visual)

IRI 3.64 = IRI 3.61-3.67

- IQL 5 = Network performance monitoring
- How accurate do we need the data to be?
 - High accuracy level
 - Medium accuracy level
 - Low accuracy level

IRI 3.6 = IRI 3.3-3.9 IRI 3 = IRI 2-4 (Good, Fair, Poor)

Data Reliability

- Data needs to be reliable
 - Keep data errors within the predefined accuracy
 - Poor reliability can reduce the level of accuracy by an unknown factor
- Calibration of survey equipment
 - High accuracy equipment can give wrong data if not properly calibrated
 - Roughness apps have very varying accuracies depending on the vehicle used
 - Use equipment in defined operating ranges
- Avoid human errors
 - Avoid manual copying of data ensure automatic data imports
 - Avoid fatigue assess surface distress from video instead of directly on the road
 - Ensure replicability of data collection properly store all raw data
 - Check resulting data for errors or inconsistencies

Data types

- General data
- Inventory data
- Traffic (and accident) data
- Condition data
- Project/Contract data (past, ongoing, planned)

General data

- General data
 - Road code
 - Road name (start end)
 - Administrative road class
 - Construction year
 - Last repaving year
 - Responsible management entity
 - Administrative divisions GIS data (province, municipality, oblast, state, district, etc.)
 - Population data (location, number, density, etc.)
 - Rainfall (by class)
 - City/Town/Village GPS locations
 - Background GIS data (maps, satellite photographs)
 - etc.
- Collected from secondary sources

Inventory data

- Road inventory
 - Length (start + end chainage)
 - GPS location (coordinates)
 - Surface type
 - Carriageway width
 - Number of lanes
 - Terrain class
 - Technical class
 - Shoulder width
 - Drainage type
 - etc.
- Collected through surveys
- Does not change rapidly

- Bridge inventory
 - Bridge type
 - Length
 - Width
 - GPS location
 - Chainage
 - Deck material
 - Number of spans
 - Abutment type
 - etc.
- Other structures
 - Culverts
 - Retaining walls
 - etc.

Traffic and accident data

- Traffic data
 - Number of vehicles per day
 - Preferably by vehicle class
 - Road (link) code
 - GPS location
 - Survey date
 - Survey type
 - Traffic category
 - etc.

- Accident data
 - Accident date
 - GPS location
 - Number of fatalities
 - Number of serious injuries
 - Type of accident
 - etc.

- Collected through manual/ automated traffic counts
- For different roads or road links

Collected from police?

Condition data

- Surface condition
 - Roughness (IRI)
 - Surface distress
 - Potholes
 - Cracking
 - Rutting
 - Edge break
 - Patching
 - etc.
 - Deflection
 - Gravel thickness
- Collected through surveys
- Can change rapidly
- Either measured or as condition class

- Structure condition
 - Bridge condition
 - Deck
 - Abutment
 - Bearings
 - Beam
 - etc.
 - River/coastal protection condition
 - Culvert condition

Project and Contract data

- Project/Contract data
 - Project/Contract code
 - Road (link) code
 - Location (start + end chainage)
 - GPS location (coordinates)
 - Treatment type(s)
 - Start/end date
 - Estimated cost/Contract price
 - Funding source
 - Contract documents
 - Contractor registration number
 - Contractor name
 - etc.
- Collected from planning or procurement unit

Video and Photo data

- Video and photo data can easily be collected as part of other surveys
- Important that it is georeferenced
 - Possible to indicate location on GIS map or Google Earth
- Allows for post-processing from the office
 - Inventory data (e.g. surface type, bridge, terrain category, etc.)
 - Condition data (e.g. surface distress, damages to structures)
 - Traffic data (e.g. moving traffic counts)
 - High replicability
- Use can be made of specific software for post-processing

Data needs overview

ROADS	ТҮРЕ	UNIT	SOURCE	REMARKS	FREQUENCY
Administrative class	Link	Category	DRBFC data, legal documents	A, C, D, E	5 years
Management entity	Link	Category	DRBFC data, legal documents	MPW/DRBFC, Municipality, Private	5 years
Municipality	Segment	Category	GIS administrative boundary data	Municipality list	5 years
Administrative Post	Segment	Category	GIS administrative boundary data	Administrative Post list	5 years
Suco	Segment	Category	GIS administrative boundary data	Suco list	5 years
Road code	Link	X##	DRBFC data, legal documents	Existing codes	5 years
Road name	Link	Text	DRBFC data, legal documents		5 years
Link code	Link	X##-##	DRBFC data, legal documents	Road code-two digit link number	5 years
Link name	Link	Text	DRBFC data, legal documents		5 years
Start name	Link	Text	DRBFC data, legal documents		5 years
Start chainage	Link	#+### m	ROMDAS odometer survey		5 years / After project
Start GPS coordinate	Link	X,Y,Z	ROMDAS GPS survey		5 years / After project
End name	Link	Text	DRBFC data, legal documents		5 years
End chainage	Link	#+### m	ROMDAS odometer survey		5 years / After project
End GPS coordinate	Link	X,Y,Z	ROMDAS GPS survey		5 years / After project
GPS track	Link	X,Y,Z	ROMDAS GPS survey		5 years / After project
Link length	Link	km (m)	ROMDAS odometer survey		5 years / After project
Terrain class	Segment	Category	ROMDAS video data post-processing	Flat, Rolling, Mountainous	5 years
Rainfall class	Segment	Category	Rainfall maps	<1000mm, 1000-2000mm, >2000mm	5 years
Technical class	Segment	Category	DRBFC data	R1,R2,R3,R4,R5,RR1,RR2, underclass	1-2 years / After project
Surface type	Segment	Category	ROMDAS video data post-processing, contract data	AC,PM,ST,CC,SM,GR,ER	1-2 years / After project
Pavement Class	Segment	Category	ROMDAS video data post-processing, contract data	Sealed, Unsealed	1-2 years / After project
Carrageway width	Segment	m	ROMDAS video data post-processing, contract data		1-2 years / After project
Number of lanes	Segment	#	ROMDAS video data post-processing, contract data		1-2 years / After project
Video data	Link	Video/GPS	ROMDAS video survey	.xls/.mp4	1-2 years
Roughness	100m	IRI	ROMDAS profilometer / ROMDAS bump integrator	For network analysis	1-2 years
Roughness survey date	100m	Date	ROMDAS profilometer / ROMDAS bump integrator		1-2 years
Surface distress class	Segment	SDI	ROMDAS video data post-processing	For network analysis	1-2 years
Surface survey date	Segment	Date	ROMDAS video data post-processing		1-2 years
Last treatment	Segment	Year	DRBFC data		1-2 years / After project
Last treatment	Segment	Contract	DRBFC data	Link to contract database	1-2 years / After project
Five Year Plan	Segment	Year	Five Year Plan	Year of planned works	5 years
BRIDGES	ТҮРЕ	UNIT	SOURCE	REMARKS	FREQUENCY
Bridge code	Point	X##-B##	Appoint	Based on road code+B+two-digit code	5 years / After project
Bridge name	Point	Text	DRBFC data		5 years / After project
River name	Point	Text	DRBFC data		5 years / After project
GPS location	Point	X,Y,Z	Bridge survey / ROMDAS video post-processing	Start of the bridge	5 years / After project
Chainage	Point	#+### m	Bridge survey / ROMDAS video post-processing	Start of the bridge	5 years / After project
Bridge type	Point	Category	Bridge survey / ROMDAS video post-processing	Beam, Arch, Truss, Suspension, Cable, Other	5 years / After project
Deck material	Point	Category	Bridge survey / ROMDAS video post-processing	Concrete, timber, steel	5 years / After project
Bridge length	Point	m	Bridge survey / ROMDAS video post-processing		5 years / After project
Bridge width	Point	m	Bridge survey / ROMDAS video post-processing		5 years / After project
Bridge spans	Point	#	Bridge survey / ROMDAS video post-processing		5 years / After project
Upstream protection	Point	Category	Bridge survey	None, Concrete, Stone masonry, Gabion	5 years / After project
Downstream protection	Point	Category	Bridge survey	None, Concrete, Stone masonry, Gabion	5 years / After project
Construction year	Point	Year	DRBFC data		5 years / After project

- What data do we want/need to collect?
- What will we use that data for?
- How/where can we collect that data?
- How often do we need to collect that data?