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About this document 

The Asian Development Bank (ADB) is supporting CAREC member countries to strengthen 
their disaster risk management strategies and public sector budget resilience. This Technical 
Assistance (TA) forms part of such support. Specifically, this TA will profile earthquake, flood 
and infectious disease risk to inform the design of a regional risk transfer facility to spread and 
share such risk. 

This document is a Technical Note that elaborates on the risk modeling undertaken as part of 
this TA. Several products and documents written under this TA rely on the data, modeling and 
research described in this Technical Note, namely:  

• The disaster risk profiles which outline the hazard, exposure, and vulnerability 
characteristics of each of the eleven CAREC member countries. This Technical Note 
provides background on the data used, describes methodologies, and discusses 
limitations related to the data and the approaches. 

• The compound risk and infectious disease reports which present infectious 
disease risk across the CAREC region and quantify the compounding of earthquake, 
flood, and infectious disease risk.  

• The protection gap assessment report which discusses and estimates the 
‘protection gap’ for flood and earthquake disaster risk in the CAREC region.  

• The Disaster Risk Management Interface (DRMI) which has been designed to 
support knowledge development, awareness raising, and policy decision-making 
related to disaster risk across the CAREC region. 

• The Disaster Risk Management Interface User Guide which provides an overview 
of the functions included in the DRMI. 
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Risk analysis 

Definition of Risk Metrics and Terminology 

The risk analysis section brings together exposure, hazard, and vulnerability inputs which are 
described in detail in dedicated sections of this technical note. Earthquake and flooding risk 
are described in the disaster risk profiles using a selection of standard risk metrics. 

Affected People – the human impact of natural hazard events which may include disruption to 
livelihoods, income streams, injury, and fatalities. 

Average Annual Fatalities (AAF) – the modelled fatalities resulting from flooding / earthquake 
shaking that is expected on average for a given year. Calculated at the country-level, and at 
the province level. 

Average Annual Fatalities Ratio (AAFR) – the AAF normalized by the total population. The 
AAFR represents the proportion of the total population that is expected to be killed due to 
flooding / earthquake shaking. Calculated at the province level.  

Average Annual Loss (AAL) – the modelled loss resulting from flooding / earthquake shaking 
that is expected on average for a given year. Calculated at the country-level, at the province 
level, and by asset type. 

Average Annual Loss (Deaths) – the modelled fatalities resulting from infectious disease that 
is expected on average for a given year. Calculated at the country-level. 

Average Annual Loss (Infections) – the modelled infections resulting from infectious disease 
that is expected on average for a given year. Calculated at the country-level, and at the 
province level. 

Average Annual Loss Ratio (AALR) – the AAL normalized by the total exposed value of 
buildings. The AALR represents the proportion of the replacement value of the building stock 
that is expected to be lost due to flooding / earthquake damage. Calculated at the province 
level.  

Average Annual Number of People Affected (AAPA) – the modelled number of people that are 
expected to be affected by flooding / earthquake shaking on average for a given year. 
Calculated at the country-level, and at the province level. 

Direct Damages – losses that result from hazard event impacts to assets including 
infrastructure, buildings and their contents. 

Disease cases exceedance probability curve – The modelled number of cases, of a given 
pathogen, that is expected on average for a given return period. Calculated for selected 
pathogens relevant to the country in question. 

Earthquake / flooding damage exceedance probability curve – the modelled damages 
resulting from flooding / earthquake shaking, that is expected on average for a given return 
period. Calculated for direct and indirect damages. 

Economic Damage and Loss – the direct and indirect damages and losses resulting from a 
natural hazard event. This includes impacts to the natural and built environment, to people, 
businesses, and governments. 

Indirect Damages – losses that result from hazard event disruption to social, governance / 
administrative, and economic activities, critical and public services, and people’s livelihoods.   
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Historical losses and impacts 

Data sources and methodology 

Several databases/sources were consulted to collate historical loss and impact data for each 
of the CAREC member countries, focusing on earthquake, flood, and infectious disease 
events since 1990. A description of each database is provided in Table 1. 

Table 1: Referenced databases for collation of disaster impact and loss information across the 

CAREC member states 

Database Description 

Asian Disaster 
Reduction Center 

Established in 1988, the ADRC collates and archives key information 
on major disaster events from across the region. Detailed reports are 
additionally available for the largest-scale disaster events. 

Emergency Events 
Database (EM-DAT) 

The Centre for Research on the Epidemiology of Disasters (CRED) 
established EM-DAT in 1988. EM-DAT contains essential core data 
on the occurrence and effects of over 22,000 mass disaster events in 
the world from 1900 to present. EM-DAT is compiled from various 
sources, including UN agencies, non-governmental organizations, 
insurance companies, research institutes and press agencies. 
Historical coverage is variable by region, ranging from 1900 to 
present day. For a disaster event to be entered into EM-DAT, it must 
satisfy at least one of the following criteria: i) >=10 people reported 
killed, ii) >= 100 people reported affected, iii) declaration of a state of 
emergency, iv) call for international assistance. 

FloodList 

Established in 2008 to provide news and reports on major flooding 
events around the world. The site also acts as a historical database 
for news reports. FloodList is funded by the European Union 
Copernicus programme and is managed by a team of researchers 
based in Germany.  

Global Significant 
Earthquake Database 

Hosted by the National Centers for Environmental Information 
(NCEI), this databased provides a global listing of over 5,700 
earthquakes from 2150 BC to the present. ‘Significant’ earthquakes 
are defined as those that caused i) moderate damage (approximately 
$1 million or more), ii) >= 10 deaths, iii) magnitude >= 7.5, iv) 
Modified Mercalli Intensity of X or greater, v) or the earthquake 
generated a tsunami. 

International Federation 
of Red Cross and Red 
Crescent Societies 
(IFRC) 

A global humanitarian organization, which coordinates and directs 
international assistance following natural and man-made disaster 
events in non-conflict situations. Produces reports covering the 
impacts of major disaster events.  

Metabiota infectious 
disease database 

A global database collated from >240 data sources, capturing >1,200 
outbreaks over a 100-year period. The database covers 230 
countries and territories and over 150 pathogens. 

Munich Re 
Munich Re’s NatCatSERVICE has collated data on disaster losses 
since 1980. While the database itself is proprietary, relevant reports / 
articles were consulted to triangulate specific event impacts/losses. 

National Centers for 
Environmental 
Information (NCEI)  

An archive of atmospheric, coastal, geophysical, and oceanic 
research data, including dedicated section for Natural Hazards, 
Disasters and Severe Weather. 
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ReliefWeb 
A humanitarian information service provided by the United Nations 
Office for the Coordination of Humanitarian Affairs (OCHA). Includes 
detailed articles and reports on major humanitarian disaster events. 

Swiss Re sigma reports 
Provides global assessments of insured and uninsured losses across 
a range of perils.  

World Bank 
Selected reports / materials consulted where triangulation of specific 
event impacts / losses was warranted. 

 

Local data sources were also consulted and are referenced in the relevant section of each risk 
profile document. A list of countries for which local data sources were available is presented 
in Table 2. Loss data collated from these and selected local data sources was made consistent 
across profiles and over time by converting values to USD, consistent to 2019 prices. Impact 
and loss figures from these databases were validated through reference to national reports / 
sources where possible. 

Table 2 Local data sources used to obtain historic loss information. 

Country Data Source 

Azerbaijan 
Ministry of Emergency Situations of The Republic of Azerbaijan. 
State Agency for Water Resources. Accessible at: 
https://www.fhn.gov.az/?eng  

Kyrgyz Republic 
Ministry of Emergency Situations of the Kyrgyz Republic. Accessible at: 
http://en.mes.kg/  

Mongolia Institute of Meteorology, Hydrology and Environment, Mongolia 

Pakistan 
National Disaster Management Authority of Pakistan. Accessible at: 
http://cms.ndma.gov.pk/  

Tajikistan 
Committee for Emergency Situations and Civil Defense, Government of 
the Republic of Tajikistan  

Uzbekistan 
Centre of Hydrometeorological Service under the Cabinet of Ministers of 
the Republic of Uzbekistan; The State Committee of the Republic of 
Uzbekistan on Statistics. 

 

Uncertainties and limitations in the data and methodology 

The historical loss information collected during this project represents an important input to 
risk modeling and helps to guide disaster risk management recommendations. Demonstrating 
the value of timely and accurate data collection following disaster events should provide a 
clear motivation for investment in appropriate data collection practices and in the institutions 
necessary to support them. As databases continue to be enhanced and updated, risk modeling 
outputs can be further refined, leading to improved model outputs.  

Databases collating information on historical losses and impacts are characterized by certain 
uncertainties and limitations. These include: 

• Underreporting of losses and impacts. This occurs for various reasons, including 
a lack of institutions responsible for collecting and archiving such information, lack of 
formal reporting criteria/changing criteria over time, difficulties surrounding the 
collation of information collected globally/in different languages; 

• Historical bias. Loss and/or damage reporting completeness increases closer to 
present. This can result in the omission of smaller/moderate events further back in 
time, resulting in partial coverage that is bias towards the inclusion of larger events; 

https://www.fhn.gov.az/?eng
http://en.mes.kg/
http://cms.ndma.gov.pk/
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• Local data sources. Local sources of data were consulted where possible, though 
noting that sometimes such sources are difficult to access, collected on an ad hoc 
rather than structured basis, and more difficult to interpret in a consistent way. 

The uncertainties and limitations of individual databases have been mediated to some extent 
by consulting a selection of databases, allowing for triangulation with complementary datasets 
(articles, industry and academic reports, peer-reviewed research papers). Additional checks 
have been undertaken where necessary through consultation with local stakeholders across 
the CAREC member states. 
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Hazard 

Data sources and methodology 
 

Earthquake 
 
Earthquake hazard was computed across the CAREC member countries using a selection of 
hazard models included in the GEM Hazard Mosaic.1 The GEM Hazard Mosaic is a collection 
of the best earthquake hazard science available publicly at the global scale (Figure 1). The 
models used in this project are:2 the Earthquake Model of the Middle East region3 (EMME) 
covering the Middle East, the Earthquake Model for Central Asia4 (EMCA) covering Central 
Asia and, the Northeastern Asia (NEA) model covering Mongolia.  

The China Earthquake Administration did not authorize the use of the GEM Hazard Mosaic 
model for the People’s Republic of China (PRC). GEM is currently developing a new model 
for PRC, with a first release version of this model used to compute hazard for the Inner 
Mongolia and Xinjiang Uyghur Autonomous Regions. 

Figure 1: Seismic hazard map depicting the geographic distribution of the peak ground acceleration 
with 10% probability of exceedance in 50 years. Selected CAREC member countries are highlighted 

blue. 

 

 

 
1 Pagani M, Garcia-Pelaez J, Gee R, et al. (2020) The 2018 version of the Global Earthquake Model: Hazard 
component. Earthquake Spectra, 36(1_suppl), 226-251. https://10.1177/8755293020931866  
2 GEM Hazard Model Documentation. Accessible at: https://hazard.openquake.org/gem/  
3 Giardini, D., Danciu, L., Erdik, M., Sesetyan, K., Demircioglu, M., Akkar, S., Gülen, L. and Zare, M. (2018) Seismic 
Hazard Map of the Middle East. Bulletin of Earthquake Engineering, 16, 3567-3570. 
https://doi.org/10.1007/s10518-018-0347-3  
4 Ullah, S., D. Bindi, M. Pilz, L. Danciu, G. Weatherill, E. Zuccolo, A. Ischuk, N. N. Mikhailova, K. Abdrakhmatov, 
and S. Parolai. (2015) Probabilistic Seismic Hazard Assessment for Central Asia. Annals of Geophysics, 58 (1). 
https://doi.org/10.4401/ag-6687.  

https://10.0.4.153/8755293020931866
https://hazard.openquake.org/gem/
https://doi.org/10.1007/s10518-018-0347-3
https://doi.org/10.4401/ag-6687
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Seismic hazard maps were computed from the regional models using the OpenQuake Engine, 
the hazard and risk calculation engine developed by GEM5,6, which follows the Probabilistic 
Seismic Hazard Analysis (PSHA) procedure.7 PSHA involves the construction of an input 
model containing a seismic source and a ground-motion characterization. The input model 
defines the position of the earthquake sources, their geometry and the frequency with which 
each source generates events of different magnitudes. The latter specifies the ground-motion 
models used to compute the level of shaking at a collection of sites given a rupture. 

The next step is the calculation of the so-called hazard integral. This integral is resolved 
numerically in the OpenQuake Engine using two strategies, one that samples ruptures and 
ground motion using a Monte Carlo procedure8 and, one that solves the integral using discrete 
representations of functions. The former approach generates the information needed to 
compute risk while the latter calculates seismic hazard maps and hazard results used, for 
example, in building code regulations. 

 

Flood 
 
Flood risk modeling across the CAREC member countries has been conducted using JBA’s 
probabilistic Global Flood Model at a consistent spatial resolution of 30 m across all countries 
/ regions. The Global Flood Model incorporates JBA's Global Flood Map and Global Flood 
Event Set and is implemented using JBA’s FLY technology. FLY is used to implement updated 
vulnerability (depth-damage) functions and disaggregate exposure values to coordinate points 
(weighted by WorldPop 2015 population distributions) across the area of interest. The result 
is a distribution of exposure points that is geographically continuous, allowing the full 
distribution of hazard intensities (i.e. flood depths) to be captured. 

The Global Flood Event Set (GFES) is a catalogue of over 15 million plausible inland flood 
events worldwide. Events characterize the extent and intensity of flooding geographically and 
are represented by river and surface water severity at point locations. The GFES is generated 
using a modeling cascade which starts with the simulation of rainfall everywhere, then rainfall-
runoff, and finally event selection. Rainfall simulation is performed using a unique combination 
of sophisticated statistical techniques, and rainfall-runoff is simulated everywhere using 
physically based hydrological models and prediction in ungauged basins. Importantly, the 
GFES contains flood events that are more extreme than have been observed in recent history, 
but which are still physically plausible.  

A regionally calibrated rainfall-runoff approach allows the generation of river flooding at 
locations without flow gauges. The results of the simulations are time series of daily river flow 
and rainfall intensities which are then grouped into events using multivariate de-clustering.  

The Global Flood Map provides undefended river and surface water flood extents and depths 
for six return periods (20, 50, 100, 200, 500 and 1,500 years). The map is created using 
observed river and rainfall data to generate extreme rainfall and river flow volumes and 
allowing those volumes to spread across the terrain using hydraulic modeling. River modeling 
captures flooding from rivers with a catchment area over 500 km2 and surface water modeling 

 
5 Pagani, M., D. Monelli, G. Weatherill, L. Danciu, H. Crowley, V. Silva, P. Henshaw, et al. (2014) OpenQuake 
Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model. Seismological Research Letters, 
85(3), 692–702. https://doi.org/10.1785/0220130087.  
6 Silva, V., Crowley, H., Pagani, M., Monelli, D. and Pinho, R. (2014) Development of the OpenQuake Engine, the 
Global Earthquake Model’s Open-Source Software for Seismic Risk Assessment. Natural Hazards, 72(3), 1409–
27. https://doi.org/10.1007/s11069-013-0618-x.  
7 Cornell, C.A. (1968) Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 
1583–1606. https://doi.org/10.1785/BSSA0580051583  
8 A Monte Carlo sampling approach involves random sampling of a probability distribution (in this case the 

distribution of rupture locations and ground motion intensity) to capture the plausible range of hazard events. 

https://doi.org/10.1785/0220130087
https://doi.org/10.1007/s11069-013-0618-x
https://doi.org/10.1785/BSSA0580051583
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captures flooding from smaller rivers and locations where rainfall pools in depressions in the 
topography (Figure 2). 

Figure 2: Example of a 100-year return period Global Flood Map for a small area of the Indus basin in 

Pakistan 

 

The river flood areas used in the Global Flood Model are hydrologically sensible areas known 
as Hydrological Accumulation Zones (HAZ). HAZ provide a simple means of identifying areas 
that may be affected by the same flood event and provide a consistent approach at national 
or global scale (Error! Reference source not found.). Each HAZ represents the boundary of a
 hydrological catchment approximately 500 km2 in size and are generated using Digital 
Elevation Models and drainage lines.  

Figure 3: Example of the hydrological catchments used for flood modeling.  
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Flood defences are modelled in parallel to JBA's undefended flood maps and the two datasets 
are combined to produce a defended view of flooding. The defence locations and extents are 
determined using a combination of third-party sources (e.g. published government 
information, aerial imagery, engineering reports, other online material). Where third-party 
information is of poor quality or incomplete, JBA’s own analysis is used to determine the 
defence location and the likelihood that the defence measure will be rendered ineffective due 
to flooding from undefended areas. Defences included in Global Flood Model include 
permanent, physical barriers (e.g. dykes) and built defence schemes. Temporary or 
demountable defences are not included. 

The area that benefits from protection is identified for each flood defence installation and a 
Standard of Protection (SoP), expressed as a return period, is then attributed to the defended 
area. Where the severity (as a return period) of a simulated flood event in Global Flood Model 
remains below the SoP, the defence is modelled as being fully effective and no flooding 
occurs. Where the severity of a simulated flood event exceeds the capacity of the defence, a 
defence overtopping calculation is applied to reduce the impact of the flooding based on the 
volume of water overtopping the defence. The change in flood return period is applied to all 
exposure points located within a defended area. 
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Historical Climate Data 
 
Historical climate data was obtained from regional climate models, bias corrected using the 
Asian Precipitation – Highly-Resolved Data Integration Towards Evaluation of Extreme Events 
(APHRODITE) dataset.9 This dataset contains the greatest number of valid stations for the 
continent in comparison with other available gridded climate datasets, due to the cooperative 
agreements with national agencies to secure data (Figure 4). 

The APHRODITE gridded daily precipitation data is a 50+ year dataset (derived from 
observational gauge and remote sensing data) covering Monsoon Asia, Central and East Asia, 
the Middle East and parts of the Russian Federation at a grid resolution of 0.25°x0.25°. For 
the Monsoon Asia domain, encompassing this project’s countries Pakistan, Tajikistan and 
Afghanistan, the dataset covers the period 1951-2015. For all other project countries, 
APHRODITE data is available for the period 1951-2007.  

Figure 4: APHRODITE rain gauge distributions for the different data domains 

 

Source: http://aphrodite.st.hirosaki-u.ac.jp/products.html 

 

Future Climate Projections 
 
Projections of future precipitation under the representative concentration pathways (RCP) 
RCP4.5 and RCP8.5 were obtained from the Coordinated Regional Climate Downscaling 
Experiment (CORDEX).10 Established by the World Climate Research Program (WCRP) in 
2009, CORDEX is an international cooperative climate modeling experiment, through which 
multiple Regional Climate Models (RCMs) are driven by general circulation models (GCMs) 
from the Coupled Model Intercomparison Project 5 and 6 (CMIP5 and CMIP6) - the simulations 
of which inform the Intergovernmental Panel on Climate Change (IPCC) reports. For this 
project, the following multi-model precipitation projections were used to develop intensity-

 
9 Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi and A. Kitoh (2012) APHRODITE: Constructing 
a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bulletin of 
the American Meteorological Society, 1401-1415. https://doi.org/10.1175/BAMS-D-11-00122.1  
10 Giorgi, F., Jones, C. and Asrar, G. (2009) Addressing climate information needs at the regional level: the 
CORDEX framework. WMO Bulletin, 58(3), 174-183. 

http://aphrodite.st.hirosaki-u.ac.jp/products.html
https://doi.org/10.1175/BAMS-D-11-00122.1
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duration-frequency curves of potential future extreme rainfall events due to climate change 
(Table 3). 

Table 3: List of GCM-RCM models from the CORDEX initiative used in this project. 

CORDEX South Asia Domain – used for Pakistan, Tajikistan and Afghanistan 

Experiment 
Name 

RCM Description Driving GCM 

CCCma-
CanESM2-IITM-
RegCM4 

The Abdus Salam International 
Center for Theoretical Physics 
(ICTP) Regional Climate Model 
version 4.4.5 (RegCM4) 

Canadian Centre for Climate Modelling 
and Analysis (CCCma) - second 
generation Canadian Earth System Model 
(CanESM2) 

CSIRO-Mk3.6-
IITM-RegCM4 

 
Commonwealth Scientific and Industrial 
Research Organization (CSIRO) - Mk3.6 

IPSL-CM5A-LR-
IITM-RegCM4 

 
Institut Pierre-Simon Laplace (IPSL) - 
CM5A Earth System Model 

MPI-ESM-MR-
IITM-RegCM4 

 
Max Plank Institute for Meteorology (MPI) - 
Earth System Model  

NOAA-GFDL-
ESM2M-IITM-
RegCM4 

 

National Oceanic and Atmospheric 
Administration (NOAA), Geophysical Fluid 
Dynamics Laboratory (GFDL) - Earth 
System Model (ESM2M) 

CNRM-
CERFACS-CM5-
SMHI-RCA4 

Rossby Centre, Swedish 
Meteorological and Hydrological 
Institute (SMHI) - regional 
atmospheric model version 4 

National Centre for Meteorological 
Research (CNRM) and Centre Européen 
de Recherche et de Formation Avancée en 
Calcul Scientifique (CERFACS) - Earth 
System Model  

CORDEX East Asia Domain: Mongolia and PRC (Inner Mongolia and Xinjiang Uygur 
Autonomous Regions) 

CNRM-
CERFACS-CM5-
CLMcom-CCLM5 

 CNRM and CERFACS 

IHECH-EC-
EARTH-DMI-
HIRHAM5 

Danish Meteorological Institute 
(DMI) - regional hydrostatic 
climate model (HIRHAM5) 

Irish Centre for High-End Computing 
(ICHEC), European Consortium (EC) - 
Earth System Model 

IHECH-EC-
EARTH-
CLMcom-CCLM5 

 ICHEC-EC 

MPI-ESM-LR-
CLMcom-CCLM5 

 MPI 

CORDEX Central Asia Domain: Azerbaijan, Georgia, Kazakhstan, Kyrgyz Republic, 
Turkmenistan, and Uzbekistan 

MOHC-
HadGEM2-ES-
BOUN-RegCM4 

  

MPI-ESM-MR-
BOUN-RegCM4 

 MPI 

 

Daily gridded precipitation data were downloaded for each experiment from an Earth System 
Grid Federation data node. For historical simulations, data was obtained for the period 1961-
2005 (CORDEX SA and EA); and 1970-2005 (CORDEX CA). For future simulations, data was 
obtained for two RCPs (4.5 and 8.5) for the period ~2031-2070 (centered around the 2050s). 
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A 45-year window was selected over the standard 30-year climatology window for the 
CORDEX South Asia and East Asia domains, as these monsoon regions are influenced by 
multi-decadal teleconnections such as the Pacific Decadal Oscillation (PDO).11,12 The PDO 
undergoes phase shifts approximately every 20 to 30 years, requiring longer timeseries 
(ideally 50+ years)13 to capture such shifts and their influences on regional Asian climates. A 
36-year window was applied to the CORDEX Central Asia domain, as the historical GCM-
RCM model simulations were only available for the period 1970-2005. 

While RCMs are able simulate localized climate features much better than GCMs, they still 
often have significant biases.14 Precipitation biases in historical simulations can be quite large 
for precipitation extremes in particular;15 these biases may get carried forward into future 
projections and even be further inflated. Due to these biases, it is not advised that RCM 
projection data be directly used for climate change impact assessment studies, such as for 
future flood model estimation, without prior bias correction. 

For this analysis, bias correction was undertaken using a quantile mapping technique. 
Quantile mapping involves developing a transfer function comparing the distributions of the 
observed historical data with modeled historical simulations and transforming the distribution 
of the modeled variable to match the distribution of the historical.16   

This transfer function is then applied to future model projections.17 However, RCM biases 
might not be stationary. That is, biases over the historical period might not persist exactly in 
the same way in the future. At the same time, it is likely that the real climate change signal 
may shift a variable’s cumulative distribution function in the future. A method, quantile delta 
mapping, corrects biases from the historical period while preserving future projected relative 
changes in variable quantiles.18 The bias corrected future projections are then found by 
multiplying the relative change function with the historical modeled bias corrected value. 

A number of parametric and nonparametric transfer functions have been used in different 
studies. After testing the performance of a subset of parametric transfer functions, we found 
using the empirical cumulative distribution functions (a nonparametric method) to adjust the 
modeled values performed better and required less computational resources for the test 
country Pakistan. Pakistan was chosen as the test country given the complexity of its 
topography and the influence of the South Asian Monsoon system and westerlies in various 
provinces on seasonal precipitation. We used then this method for the remaining countries. 

 
11 Fu, C., Z. Jiang, et al. (2008) Chapter 3: Interdecadal Climate Variability in China Associated with the Pacific 
Decadal Oscillation in: Regional Climate Studies of China, pp. 97-117. Yang, X. and Y. Zhu [eds.], Springer Nature: 
Switzerland. 
12 Krishnan, R. and M. Sugi (2003) Pacific decadal oscillation and variability of the Indian summer monsoon rainfall, 
Climate Dynamics, 21, 233-242. https://doi.org/10.1007/s00382-003-0330-8  
13 Deser, C., K. Trenberth and NCAR (2016) "The Climate Data Guide: Pacific Decadal Oscillation (PDO): Definition 
and Indices." Retrieved from https://climatedataguide.ucar.edu/climate-data/pacific-decadal-oscillation-pdo-
definition-and-indices.  
14 Kjellström, E., F. Boberg, M. Castro, et al. (2010) Daily and monthly temperature and precipitation statistics as 
performance indicators for regional climate models. 4(2-3), 135-150, Climate Research, 
https://doi.org/10.3354/cr00932 
15 Christensen, J., F. Boberg, B. Christensen, et al. (2008) On the need for bias correction of regional climate 
change projections of temperature and precipitation. Geophysical Research Letters, 35(20) 
https://doi.org/10.1029/2008GL035694. 
16 Dosio, A. and P. Paruolo (2011) Bias correction of the ENSEMBLES high-resolution climate change projections 
for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, 116(D16). 
https://doi.org/10.1029/2011JD015934  
17 Li, H., J. Sheffield and E. Wood (2010) Bias correction of monthly precipitation and temperature fields from 
Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. 115(D10). Journal 
of Geophysical Research, https://doi.org/10.1029/2009JD012882  
18 Cannon, A., S. Sobie and T. Murdock (2015) Bias Correction of GCM Precipitation Mapping: How Well Do 
Methods Preserve Changes in Quantiles and Extremes? Journal of Climate, 28(17), 6938-6959. 
https://doi.org/10.1175/JCLI-D-14-00754.1  

https://doi.org/10.1007/s00382-003-0330-8
https://climatedataguide.ucar.edu/climate-data/pacific-decadal-oscillation-pdo-definition-and-indices
https://climatedataguide.ucar.edu/climate-data/pacific-decadal-oscillation-pdo-definition-and-indices
https://doi.org/10.3354/cr00932
https://doi.org/10.1029/2008GL035694
https://doi.org/10.1029/2011JD015934
https://doi.org/10.1029/2009JD012882
https://doi.org/10.1175/JCLI-D-14-00754.1
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Finally, the intensity-duration-frequency shifts in future (2050s) precipitation extremes due to 
climate change (RCP4.5 and RCP8.5) were calculated assuming an Extreme Value Type I 
probability distribution function.19 The approach to calculating the 24-hr maximum precipitation 
intensity shifts in the 2050s due to climate change can be summarized as: 

• Step 1: Regridding the CORDEX data to match the coordinate system of APHRODITE. 
The CORDEX data are in a rotate polar coordinate system, while the APHRODITE data 
are in a regular geographic longitude/latitude grid. The CORDEX data were regridded 
using Climate Data Operators (CDO). 

 

• Step 2: APHRODITE and the regridded CORDEX data were extracted for the 
Administrative Level 1 for each country. 

 

• Step 3: Each month was extracted, and quantile delta mapping performed separately per 
month. Months were modeled separately to account for stark seasonal differences in 
precipitation amounts and dry day sequences. 

 

• Step 4: The monthly bias corrected future projections were then recombined into annual 
datasets and the maximum annual precipitation value extracted for each year. 

 

• Step 5: The maximum annual 24-hr projected rainfall values from the 25th, median and 75th 
quartiles projection member across the model suite were then used to calculate the 24-hr 
intensity-duration-frequency curves for return periods of: 2, 5, 10, 20, 50, 100, 200, 500, 
1000, 1500, 5000 and 10,000 years. 

 

Infectious Disease 

 
Infectious disease risk profiles were modelled for each of the CAREC member states, 
individually and as a region. The risk profiles include probabilistic infection, hospitalization, 
and mortality risk profiles for each CAREC member state, broken down by pathogen. This 
work also forms the basis for modelling the potential trajectory of the COVID-19 pandemic 
within the region, as well as the impact of a potential clash between a natural hazard and an 
epidemic or pandemic, and risk financing best practices and options. 

Infectious disease risk profile modeling 
 
While the infectious disease modeling also captures elements of hazard, exposure, and 
vulnerability, the overall framework differs from that used for earthquake and flood. The 
infectious disease model uses a pathogen-specific, compartment model framework (see 
Figure 5 for an example), which incorporates the epidemiological dynamics of the disease of 
interest, including the availability of pharmaceutical responses (e.g., vaccines.)20  

The disease spread model operates over a human population layer that integrates the 
population and demographic characteristics of each subpopulation. Two types of human 
mobility patterns are explicitly modeled: long-range mobility, which happens on a daily time 
scale, and short-range mobility (commuting) which happens over a time period shorter than 
one day. The modeled world is divided into 1,413 geographic regions; each considered to be 
a subpopulation. CAREC countries are represented across 52 geographical areas. Thus, 

 
19 Chow, V., D. Maidment and L. Mays (1988) Applied Hydrology. Civil Engineering Series. pp: 572. McGraw-Hill 
Book Company: New York.  
20 Madhav, N., Stephenson, N., Oppenheim, B (2021). Multi-Pathogen Event Catalogs: Technical 
Note. Washington, D.C.: World Bank Group. Accessed at: 
http://documents.worldbank.org/curated/en/181791625232959415/Multi-Pathogen-Event-Catalogs-Technical-
Note 
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inputs / assumptions and outputs were made for each country individually, but also across 
different sub-groups and the entire CAREC regional bloc. 

Figure 5: Example of the pandemic influenza compartmental model structure 

 

Dividing countries into subpopulations allows for specificity in modeling epidemic and 
pandemic outbreaks. Within each subpopulation, disease accumulates during an outbreak 
simulation and may spread to neighboring subpopulations (via the short-range mobility 
component) or far-reaching subpopulations (via the long-range mobility component). 

The disease spread model simulates the progression of each modeled event on a daily 
timestep, including population mobility, infections, hospitalizations, and deaths. This creates 
time series data for each modeled event.  

Outbreak preparedness varies on an individual country basis. Preparedness can be defined 
as capacity to detect and respond to outbreaks. Metabiota has constructed a country-specific 
Epidemic Preparedness Index (EPI),21 an estimator of epidemic preparedness covering 188 
countries globally (including all CAREC member states). The EPI measures national capacity 
to effectively detect, report, and respond to public health emergencies, which will impact the 
regional occurrence and spread of modeled events. The EPI methodology, data, and back-
testing and validation results have been published in a peer-reviewed scientific journal, and 
have been cited and used in the scientific literature, as well as in analyses of global pandemic 
preparedness as well as macroeconomic analyses conducted by the World Bank. 

The model incorporates country-specific preparedness via the EPI, rather than using 
aggregated, regional assumptions. Variation in capacity impacts the regional occurrence and 
spread of modeled events by affecting the time until detection, the scope and scale of 
response mobilization, and the case counts and temporal dynamics of an epidemic simulation. 

The modeled exceedance probability curves include only those infections and deaths that are 
in excess of the regularly occurring annual baseline. For the included respiratory diseases like 
pandemic influenza and novel coronaviruses, this baseline will be zero, but for diseases like 
Crimean-Congo Hemorrhagic Fever, which is endemic in some CAREC countries, the 
baseline will be higher than zero.  

 
21 Oppenheim B, Gallivan M, Madhav NK, et al. (2019) Assessing global preparedness for the next pandemic: 
development and application of an Epidemic Preparedness Index, BMJ Global Health; 4:e001157. 
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COVID-19 Scenario modeling 

For this TA, Metabiota provided simulations of the potential trajectory of the COVID-19 
pandemic, using a customized compartment model framework that incorporates the 
epidemiological dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, 
the etiological agent of COVID-19). This computational model was used to simulate the 
spatiotemporal dynamics of SARS-CoV-2 within CAREC members. The model incorporates 
both potential pharmaceutical and non-pharmaceutical interventions – for example, the 
availability of vaccines, or implementation of social distancing measures – which are 
implemented differently in each country, based upon the degree of implementation of 
appropriate policy responses and mitigation measures.  

 

Infectious disease modeling for compound risk analysis  
 
The infectious disease natural hazard compounding modeling relies on the compartmental 
model structure described above, input datasets relevant to each CAREC member country / 
region, and associated assumptions surrounding intervention. 

For the compound modeling specifically, baseline assumptions and parameter values were 
selected to reflect a pandemic influenza event with a return period of approximately 100 to 
200 years. Simulations were initiated with 100 initial infections and run for three years. The 
modeled scenarios included vaccination of the susceptible population starting at 9 months, 
accounting for development time of a vaccine for a novel pandemic influenza virus which is 
applied for all CAREC countries.  

Once vaccination begins in the scenario, the susceptible population is vaccinated at a constant 
rate, which varies by epidemic preparedness until 65% of the population is vaccinated or until 
the simulation ends. The vaccine efficacy within the simulation is assumed to be 75%. The 
baseline reproduction number is 1.9 and decreases over time to 1.5 due to non-
pharmaceutical interventions (e.g., social distancing, etc.). The case fatality ratio (CFR) varies 
by epidemic preparedness between 0.003 and 0.006. The baseline parameter value 
assumptions are consistent with parameter values observed during prior influenza pandemics. 
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Uncertainties and limitations in the data and methodology 

Earthquake 

 
The four hazard input models developed use different dataset and methodologies for the 
eleven CAREC countries. This means that some differences in the hazard results at borders 
between models are inevitably present. Overall, these differences can be considered 
acceptable given the different approaches and components included in the different models 
(e.g. ground motion models). It is worth noting that the earthquake risk analyses were 
completed at the national scale, hence the model building approaches used for the various 
models did not impact on the internal consistency of the results computed in each country. 

The models used for this work are regional models covering large continental areas which 
means that they do not necessarily reach the level of detail expected for a hazard model at 
the national scale. Moreover, model evaluation and testing activities carried out recently 
emphasized the need of improving some of models utilized in this project (e.g., Earthquake 
Model for Central Asia).  

Flood 

 
Flood is a complex natural hazard that can have impacts on a wide range of spatial scales. 
While the physical processes that result in river flooding (also known as fluvial flooding) are 
relatively well understood and can be effectively modelled, surface water flooding, also 
referred to as pluvial or flash flooding, presents a challenge. Furthermore, the locations where 
surface water flooding occurs rarely have rainfall measurements or monitoring gauges. This 
means that there is little historical information on which to base the models. Limitations in 
computing power means that it is difficult to model surface water flooding on the spatial scales 
on which it occurs. Where surface water occurs in urban areas, the location of property 
(including unplanned settlements) and the status of urban drainage networks has a significant 
impact on the flood risk. In mountainous parts of the region, snowmelt and glacial outflows 
can also have an impact on flood risk. 

The Global Flood Model was regionally validated using observations from across the CAREC 
member countries. This procedure is impacted by the density of observation points. For 
Central Asia the spatial availability of gauge data is limited, leading to uncertainty in the 
application of gauged catchment characteristics to distant ungauged basins. 

The intensity of flooding varies greatly over small spatial scales, so the resolution at which an 
analysis is carried out can have a considerable impact on estimated losses. For instance, the 
modeling of Hydrological Accumulation Zones (HAZ) depends on analysis of Digital Elevation 
Models whose resolution and accuracy is globally variable. 

Historical Climate Data 

 
Although APHRODITE remains the only long-term (1951 onward) high-resolution precipitation 
and temperature dataset for Asia, there are uncertainties associated with its use. For example, 
the density of observation stations declined in some countries in the 1990s post-Soviet Union, 
potentially resulting in an over- or under-estimation of precipitation (or temperature) in certain 
areas at a particular time period in the APHRODITE data. 

Topography also introduces data uncertainties. Precipitation interpolation at high mountain 
elevations of the Hindu Kush Himalaya can be uncertain due to the combination of low spatial 
density of ground observations and micro-orographic effects. Complex topographies lend to 
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significant micro-orographic effects on precipitation, with some studies,22,23 noting a factor of 
four difference in precipitation amounts over less than 10 km in some parts of the Himalaya. 
These effects introduce uncertainties in precipitation amounts in high mountain areas, 
regardless of whether the precipitation is associated with the Asian Monsoon System, winter 
westerlies flow from the Mediterranean or more localized convection.  

Yet, the quality of the APHRODITE datasets is strengthened in nearer decades through the 
incorporation of remote sensing observations and improved topography calculations. The 
underlying observational data undergo stringent quality control and cleaning before 
incorporation into the interpolation model. For these reasons, the APHRODITE dataset 
remains the preferred high-resolution, long-term gridded climate dataset for Asia. 

Future Climate Projections 

 
Multiple sources of uncertainty influence climate projections. Some uncertainty originates from 
within the models themselves, owing to imperfect understanding of the Earth system. 
Furthermore, certain models are designed to resolve some processes (e.g. convection) at 
higher resolution or for particular areas better than others.24 The sources of uncertainty internal 
to climate models are being reduced with better understanding of land-ocean-atmospheric 
dynamics and improved computational power allowing for more model realizations to find and 
reduce model uncertainties. 

Other sources of uncertainty are external to the climate models, for example, while it is well-
established that land use change and emissions are driving climate change, it is difficult to 
precisely quantify how severe both will be in the future. The current RCPs used to drive models 
are plausible estimates of different climate futures, conditioned on scenarios of emissions 
trajectories. How much emissions and land use change continue to increase and at what rate, 
depends significantly on the policies and actions societies take to transform economies to be 
low carbon and sustainable. 

For these reasons, it is necessary to use multiple climate models to derive a range of possible 
change in an area’s climate. A larger number of models can provide a more robust range of 
future climate change (based on existing knowledge) than a single model or a few.  

In this study, only two GCM-RCM combinations were available for the CORDEX Central Asia 

domain at the start of the project for which scientific literature evaluating model performance 

existed. And, as described previously, there are limitations with observational data in many 

countries. Over the South Asia domain, the combination included 6 GCMs, but only 2 RCMs. 

For the East Asia domain, results from 3 GCMs and 2 RCMs were available. Therefore, for all 

three regions the potential range of changes in precipitation extremes and seasonal means 

might not be as robust. Repeating the exercise for all three regions is advised once new GCM-

RCM combinations become available in the future. 

Infectious Disease 

 
Metabiota’s disease spread models include several parameters related to response, 
containment measures, and interventions. These are all included as components within the 
mechanistic model. For each pathogen catalog, the parameter distributions (e.g. timing of 

 
22 Lang, T. and A. Barros (2002) An investigation of the onsets of the 1999 and 2000 monsoons in central Nepal. 
Monthly Weather Review, 130(5), 1299-1316.  
https://doi.org/10.1175/1520-0493(2002)130<1299:AIOTOO>2.0.CO;2.  
23 Barros, A., G. Kim, E. Williams and S. Nesbitt (2004) Probing orographic controls in the Himalayas during the 
monsoon using satellite imagery. Natural Hazards and Earth System Sciences, 4, 29-51. 
https://doi.org/10.5194/nhess-4-29-2004.  
24 Giorgi, F., Jones, C. and Asrar, G. (2009) Addressing climate information needs at the regional level: the 
CORDEX framework. WMO Bulletin, 58(3), 174-183.  

https://doi.org/10.1175/1520-0493(2002)130%3c1299:AIOTOO%3e2.0.CO;2
https://doi.org/10.5194/nhess-4-29-2004
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vaccine availability, efficacy of non-pharmaceutical interventions, etc.) that are included are 
based on the best available data and assessments of current outbreak response capabilities. 
Model assumptions regarding the variation in transmission rates and the effectiveness and 
timing of mitigation measures were assessed through sensitivity testing. 

The impacts of potential improvements in containment efforts (e.g., faster response time, 
availability of a new vaccine) were tested within the modeling framework by modifying the 
assumptions surrounding these parameter distributions and would be reflected in the modeled 
outcomes.   
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Exposure 

Data sources and methodology 
 
A consistent exposure dataset was used across the earthquake and flood risk modeling, based 
on the GEM Global Exposure Database.25 The exposure database contains information 
regarding the number of buildings, geographical location, replacement costs (including the 
structural and nonstructural components, and the building contents), number of occupants and 
vulnerability classes of the building stock. The GEM Building Taxonomy (Version 2.0)26 was 
used to classify the building stock in the CAREC member countries. 

We are leveraging the regional and national exposure models that formed the basis of GEM’s 
global seismic risk modeling effort.27 Four exposure models cover the region of interest for this 
project: the exposure model for Central Asia covering Kazakhstan, the Kyrgyz Republic, 
Tajikistan, Turkmenistan, and Uzbekistan; the exposure model for PRC; the exposure model 
for the Middle East covering Afghanistan, Azerbaijan, Georgia, and Pakistan; and the 
exposure model for Mongolia.  

The German Research Centre for Geosciences led the development of the harmonized 
building exposure model for Central Asia,28,29 and these models have been subsequently 
improved by GEM. The exposure model for the Xinjiang Uyghur and Inner Mongolia 
Autonomous Regions of the PRC derive from the national exposure model for the PRC 
developed by GEM in collaboration with Beijing Normal University, relying on a compilation of 
housing, establishment, and industry datasets obtained from the National Bureau of Statistics 
of China.30 Exposure models for Afghanistan, Azerbaijan, Georgia, Pakistan, and Mongolia 
have been developed by GEM, based on the respective national population and housing 
censuses and establishment / enterprise surveys. 

Overall, the exposure data includes residential, commercial, and industrial built assets for all 
member countries. The exposure models for each country are defined at the smallest 
administrative level at which source datasets are available. The development of the exposure 
models in all cases followed four main steps: 

1. Definition of building classes. 
2. Mapping census data to building classes. 
3. Mapping housing units or establishments to buildings. 
4. Estimation of built up areas and replacement costs. 

 

 
25 GEM Global Exposure Database. Accessible at: https://storage.globalquakemodel.org/what/physical-integrated-
risk/exposure-database/  
26 Brzev, Scawthorn, C, Charleson, E.W., Allen, L., Greene, M., Jaiswal, K., and Silva, V. (2013) GEM Building 
Taxonomy (Version 2.0). GEM Technical Report 2013-02. Accessible at: 
https://pubs.er.usgs.gov/publication/70058718  
27 Silva, V., D. Amo-Oduro, A. Calderon, C. Costa, J. Dabbeek, V. Despotaki, L. Martins, et al. (2020) Development 
of a Global Seismic Risk Model. Earthquake Spectra, February. https://doi.org/10.1177/8755293019899953.  
28 Wieland, Marc, Massimiliano Pittore, Stefano Parolai, Ulugbek Begaliev, Pulat Yasunov, Sergey Tyagunov, Bolot 
Moldobekov, Saidislom Saidiy, Indalip Ilyasov, and Tanatkan Abakanov. “A Multiscale Exposure Model for Seismic 
Risk Assessment in Central Asia.” Seismological Research Letters 86, no. 1 (2015): 210–22. 
https://doi.org/10.1785/0220140130.  
29 Wieland, Marc, Massimiliano Pittore, Stefano Parolai, Ulugbek Begaliev, Pulat Yasunov, Jafar Niyazov, Sergey 
Tyagunov, et al. “Towards a Cross-Border Exposure Model for the Earthquake Model Central Asia.” Annals of 
Geophysics 58, no. 1 (2015). https://doi.org/10.4401/ag-6663.  
30 Ma, J., Rao, A., Silva, V. et al. (2021) A township-level exposure model of residential buildings for mainland 
China. Nat Hazards, 147. https://doi.org/10.1007/s11069-021-04689-7  

https://storage.globalquakemodel.org/what/physical-integrated-risk/exposure-database/
https://storage.globalquakemodel.org/what/physical-integrated-risk/exposure-database/
https://pubs.er.usgs.gov/publication/70058718
https://doi.org/10.1177/8755293019899953
https://doi.org/10.1785/0220140130
https://doi.org/10.4401/ag-6663
https://doi.org/10.1007/s11069-021-04689-7
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The following sections of this document briefly describe these steps; and a more detailed 
overview of the general methodology adopted for the development of the exposure models 
can be found in Yepes-Estrada et al.31 

Definition of building classes 

 
The first step in developing an exposure model is the definition of classes that allow the 
grouping of buildings with similar characteristics. The current model includes, at least, 
information regarding the material and type of the lateral load resisting system, number of 
storeys, ductility level, and occupancy class. There are other attributes that might affect the 
buildings’ structural response to damage, but most of the countries have limited information 
about those properties, and only a handful reported additional features that were included in 
the models. 

The identification of the predominant building classes in each country depends on the 
construction practice, meteorological conditions and availability of construction materials. 
Local, national, and regional reports about predominant construction classes and damage 
surveys of past earthquakes in each country have been consulted, along with additional 
information from global initiatives, such as the World Housing Encyclopedia, UN-HABITAT, 
and the PAGER building inventory database. For Afghanistan and Pakistan, the list of building 
classes was also informed by the building typology classification for South Asia proposed in a 
joint study by the Aga Khan Development Network (AKDN) and the Norwegian Seismic Array 
(NORSAR)32.All buildings in the overall exposure model for the CAREC member countries 
have been classified according to an extended version of the GEM building taxonomy. An 
example of the taxonomy applied to a selection of the CAREC member countries is provided 
in Table 4. 

 

 

 

 

 

 

 

 
31 Yepes-Estrada, Catalina, Vitor Silva, Anirudh Rao, Alejandro Calderón, Catarina Costa, Jamal Dabbeek, Luís 
Martins, Ana Beatriz Acevedo, Helen Crowley, and Murray Journeay. (2020) Development of a Global Exposure 
Model for Regional Seismic Risk Assessment. In 17th World Conference on Earthquake Engineering, Sendai, 
Japan, 2020. 
32 Lang, D. H., Kumar, A., Sulaymanov, S., & Meslem, A. (2018). Building typology classification and earthquake 
vulnerability scale of Central and South Asian building stock. Journal of Building Engineering, 15, 261–277. 
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Table 4: Building classification used in the exposure models for Kazakhstan, the Kyrgyz Republic, 
Tajikistan, Turkmenistan, and Uzbekistan 

 

 

Mapping housing census and establishment survey data to building classes 

 
The residential exposure models presented in all cases, except Turkmenistan, are derived 
using the latest published housing census tables in each country at the smallest available 
administrative level, and with a modular structure that allows local, national and regional 
improvements or updates to be incorporated, as new data is released. This is considered to 
be a bottom-up approach for creating the building exposure models, as opposed to top-down 
approaches that use aggregate statistics such as the total population or GDP per unit area to 
estimate the number of buildings in that area. For Afghanistan, which has not had a nationwide 
census since 1979, the Afghanistan Living Conditions Survey (ALCS) 2016-1733 is used as 
the primary data source. The ALCS was designed to provide representative results at the 
national and provincial level. For Turkmenistan, where no housing information is available at 
the subnational level, the top-down approach is adopted, using the gridded population dataset 
from WorldPop34 as a proxy for the number of buildings. 

Typically, the housing census for a given country provides the number of buildings or dwellings 
by type of housing unit (e.g., individual house, apartment house). Less often, information about 
the building wall material, age of construction, height and presence of basements is also 
included. The data are usually found aggregated at a given administrative division (e.g., 
province, municipality). The information provided by the housing census varies considerably 
between countries. Moreover, the distinction between rural and urban areas is often not made 
in all housing censuses. 

For the commercial and industrial building counts, there are no national surveys that compile 
specific building information in any of the member countries under consideration, and therefore 
secondary data sources were used, such as the establishment census, statistical yearbooks 
and labor force (number of employees). In all cases except Turkmenistan, the existing 
databases included the number of establishments, size of the enterprises (or number of 
employees) and the principal economic activity (e.g., retail, manufacturing, warehouse, 
construction, mining) at the smallest available administrative level. For Turkmenistan, where 
this data was not available, proxies of distributed workforce across economic sectors were 

 
33 Central Statistics Organization (2018), Afghanistan Living Conditions Survey 2016-17. Kabul, CSO. Available at: 
https://www.nsia.gov.af:8080/wp-content/uploads/2020/10/ALCS-2016-17-Analysis-report-English-23-.09-
2018_compressed-1.pdf 
34 WorldPop. 2021. Accessible at: https://www.worldpop.org/methods/populations  

https://www.nsia.gov.af:8080/wp-content/uploads/2020/10/ALCS-2016-17-Analysis-report-English-23-.09-2018_compressed-1.pdf
https://www.nsia.gov.af:8080/wp-content/uploads/2020/10/ALCS-2016-17-Analysis-report-English-23-.09-2018_compressed-1.pdf
https://www.worldpop.org/methods/populations
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combined with national and regional estimates of average area per worker, and average area 
per facility per economic sectors, to generate the distribution of buildings per economic sector. 

Each country presents the relevant census databases with different levels of detail, formats 
and spatial resolution, and census databases generally focus on population dynamics, 
housing conditions, economic activity and employment characteristics and indicators, rather 
than on the number of buildings in different vulnerability classes directly. The definition of the 
number of existing buildings per occupancy type plus the categorization into building classes 
require additional efforts that incorporate uncertainties in the modeling process. 

For the Xinjiang Uyghur and Inner Mongolia Autonomous Regions of PRC, the primary 
reference datasets for the residential exposure are the household statistics tables published 
by the Sixth National Population Census of the People's Republic of China, conducted in 2010. 
The datasets compiled by the census using the long-form survey include information about 
the characteristics of households in rural, town, and urban areas. This information is 
aggregated up to the various administrative levels. While the province-level and prefecture-
level household statistics tables are available for all provinces, county-level aggregated data 
are not available for a few provinces. The main household characteristics that are of interest 
for the development of a building exposure model —including the building bearing type, the 
range of the number of stories, and the year of construction— are obtained from the long-form 
section of the 2010 census. Additional characteristics, such as the average size of family 
households and the average floor space per capita, are obtained from the detailed census 
tables.  

The building bearing type in the PRC census data is coarsely divided into “Steel and Steel 
Reinforced Concrete”, “Composite Structure”, “Brick-Wood Structure”, and “Other”. For the 
purposes of the assignment of appropriate structural vulnerability functions to the buildings, 
this field must be further subdivided into structural classes, such as wood-frame structures, 
earthen or adobe masonry, stone masonry, brick masonry (unconfined and reinforced), 
reinforced concrete (infill-wall moment frame, shear-wall, and dual-system) structures, and 
steel structures. This disaggregation step is informed by consultation with local engineering 
experts, the existing literature and author knowledge. The disaggregation of households by 
building bearing type into households by structural type is undertaken separately for the rural, 
town, and urban areas since construction practices and dominant technologies are often 
different in the three cases. 

Another attribute that is often challenging to define is the ductility level of buildings, which is 
frequently used to describe the expected seismic performance of the building. Ductility levels 
are assigned based on the type of construction, age of construction and code enforcement 
efficiency. In this study, four levels of ductility were considered: non-ductile, low, moderate 
and high ductility. For the identification of the ductility, it is necessary to understand the history 
of seismic design implementation in each country, and this involves research about the 
existing seismic design codes in the different countries and the extent of their enforcement (if 
applicable). Figure 6 shows an overview of the workflow used for assigning seismic ductility 
levels to the buildings in the different countries. 
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Figure 6: Workflow for the assignment of ductility levels 

 

Source: Dabeek and Silva, 2019 

 

Mapping housing units or establishments to buildings 
 
The method used for the estimation of building counts depends on the occupancy type, since 
the residential and non-residential (commercial and industrial) data sources vary considerably. 
For the residential buildings, the primary data sources were the population and housing 
censuses, which are generally updated every 10 years and follow international principles and 
standards. For each country, geo-referenced information at the smallest administrative level 
was collected, combining as many relevant variables as possible, such as the main 
construction material of the outer walls (e.g. masonry, concrete, wood, palm leaves), the 
dwelling type (e.g. single family house, apartment, hut), the number of storeys, the material of 
the floor (e.g. tiles, earth, concrete), the material of the roof (e.g. concrete slab, wood, thatch 
roof), the settlement type (urban or rural areas), year of construction, and in rare cases, 
information regarding the state of conservation of the building (Figure 7).  

Typically, information in the housing census is expressed in terms of dwellings or buildings 
counts. The number of dwellings needs to be converted to an estimate of the number of 
buildings using the average number of floors per building and the average number of dwellings 
per floor, for the various building types considered in the exposure model. 
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Figure 7: Residential building exposure model for the Central Asia region showing the estimated 
spatial density of residential buildings 

 

Source: Pittore et al., 2020. 

 

Estimation of built-up areas and replacement costs 

 
Quantifying the floor area and replacement cost of buildings in the exposure model is essential 
for the calculation of economic losses. The definition of the average built-up area and average 
replacement cost depends on the building class, the occupancy type, and for the residential 
buildings, on the settlement type (urban or rural). For Mongolia and the PRC, the National 
Statistical Offices reported average sizes and costs as part of their national census reports, 
whereas for the rest of the CAREC member countries where national data was not available, 
regional, and global valuation surveys were used as reference values. The replacement costs 
reported in the model are in US dollars and have been adjusted to present values. The costs 
included the structural and non-structural components of the buildings and its contents and 
were estimated on the basis that all buildings should be replaced by formal construction in 
accordance with national construction standards, and not the existing conditions. 

For the Central Asian countries of Kazakhstan, the Kyrgyz Republic, Tajikistan, Turkmenistan, 
and Uzbekistan, the average floor areas are derived using building footprints extracted from 
OpenStreetMap, from a sample of around 7,000 surveyed buildings in the Kyrgyz Republic 
and Tajikistan.35 Estimates for the average unit replacement costs are based on the average 
floor area and average number of stories per building of a particular class. The OTH (other) 
class has been assigned by default for the replacement cost of unreinforced masonry, based 

 
35 Pittore, M., Haas, M., & Silva, V. (2020). Variable resolution probabilistic modeling of residential exposure and 
vulnerability for risk applications. Earthquake Spectra, 36(1_suppl), 321–344. 
https://doi.org/10.1177/8755293020951582 

https://doi.org/10.1177/8755293020951582
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on the survey results. The replacement costs for each of the building classes are listed in 
Table 3 above. 

For Azerbaijan, Georgia, Pakistan, and Afghanistan, for the purposes of assigning 
replacement costs based on the quality of construction, two levels of construction quality were 
assumed conditional on the main construction material: reinforced concrete is considered to 
have intermediate quality, while other materials are deemed to have a lower quality. 

Replacement costs for Mongolia for different types of construction, including gers, apartments, 
and detached houses, are derived from price tables in the national report of the 2020 
Population and Housing Census of Mongolia.36 

The main source used for replacement costs for the Xinjiang Uyghur and Inner Mongolia 

Autonomous Regions is the 2010 China Statistical Yearbook37, using the floor space of 

residential buildings completed and the total value of residential buildings to infer the average 

construction cost. An annual construction cost escalation rate of 3% was assumed to bring 

the value per square meter in 2010 to the present value (2020). The replacement cost was 

compiled separately for the urban, town, and rural areas of each of the two provinces. It 

represents the average value of residential construction, including both structural components 

and nonstructural components, but it does not include building contents. The average size per 

dwelling and floor space per person are used to estimate the average floor areas of all houses 

and buildings, and the average cost per unit area is applied to estimate the total replacement 

cost for the buildings. The average size of dwellings and average cost per unit area for houses 

in urban, semi-urban, and rural areas for the two autonomous provinces are listed in Table 5. 

Table 5: Average size of dwellings and average cost per unit area for houses in urban, semi-urban, 
and rural areas in Xinjiang Uyghur and Inner Mongolia Autonomous Regions of the PRC 

 

Uncertainties and limitations in the data and methodology 

Overall, the exposure data includes residential, commercial, and industrial built assets for all 
member countries, with two exceptions: Mongolia and Turkmenistan have a residential 
exposure model alone, as insufficient information was available for modeling the commercial 
and industrial exposure. Building and population counts in the exposure models are based on 
the last available census for each country, except for Afghanistan, Mongolia, and 
Turkmenistan, as explained earlier which do not have a recent census. 

Uncertainties remain within the exposure model development, particularly in identifying the 
location of the assets, definition of the structural attributes of the assets including the building 
typologies and approximate period of construction, estimating the floor-areas and replacement 
costs of buildings.  

Exposure data is currently unavailable for certain regions of Azerbaijan, Georgia, and 
Pakistan. For example, data for the Kalbajar-Lachin region is not available in the Azerbaijan 
census. In the case of Georgia, the 2014 census could not be carried out in the territories of 
Abkhazia and South Ossetia. Additionally, the northern parts of the region of Shida Kartli are 

 
36 National Statistics Office (NSO) of Mongolia. 2020 Population and Housing Census of Mongolia. National Report.  
37 China Statistical Yearbook. Accessible at: http://www.stats.gov.cn/tjsj/ndsj/2010/indexch.htm  

http://www.stats.gov.cn/tjsj/ndsj/2010/indexch.htm
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absent from the national census data. Finally, the exposure model for Pakistan is based on 
the 2017 housing census. At the time of modeling, the housing census datasets for the 
territories of Gilgit-Baltistan and Azad Jammu and Kashmir had not been released yet. A 
census has been conducted for these territories, but the datasets are still not published. For 
the above-mentioned territories/regions of Azerbaijan, Georgia, and Pakistan, exposure is 
modelled using population estimates for the respective regions from WorldPop as a proxy to 
estimate the number of buildings.   
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Vulnerability  

Data sources and methodology 

Earthquake 

Economic damage 

The vulnerability of assets to earthquake hazards is tightly linked to the characteristics of the 
assets themselves. Accordingly, the GEM Global Asset Database building classifications 
described in the exposure section consider the main physical characteristics that influence the 
expected performance of buildings under seismic loads. 

For the Central Asian countries of Kazakhstan, the Kyrgyz Republic, Tajikistan, Turkmenistan, 
and Uzbekistan, the exposure model defines fifteen building vulnerability classes, as shown 
in Table 3.38 This classification was informed by a set of remote mapping surveys conducted 
by local engineers in the Kyrgyz Republic and Tajikistan between 2012 and 2016.39,40 The 
residential building stock in these countries is dominated by rural construction, mostly using 
adobe, unreinforced masonry, and wood as the preferred material of construction. Buildings 
that could not be clearly assigned to any one typology due to ambiguity have been assigned 
to a sixteenth ‘OTH’ (other) class.  

For Azerbaijan, Georgia, Pakistan, and Afghanistan, the predominant construction classes 
were identified from a review of existing literature, studies describing the architecture and 
energy consumption, and solicited feedback from local engineers. Thirty unique building 
classes were determined according to the material of construction, lateral load resisting 
system, ductility level, and number of stories. An example of how vulnerability varies by 
occupancy type is provided in Figure 8 below. 

 

 
38 Pittore, M. Haas, M., Silva, V. (2020) Variable resolution probabilistic modeling of residential exposure and 
vulnerability for risk applications, Earthquake Spectra, 36(1), 321-344. 
39 Megalooikonomou, KG, Parolai, S, Pittore, M (2018) Toward performance-driven seismic risk monitoring for 
geothermal platforms: Development of ad hoc fragility curves. Geothermal Energy, 6: 8. 
40 Pittore, M, Haas, M, Megalooikonomou, KG (2018) Risk-oriented, bottom-up modeling of building portfolios with 
faceted taxonomies. Frontiers in Built Environment, 4: 41. 
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Figure 8: Occupancy types based on physical vulnerability to earthquakes for Georgia.  

Source: Global Earthquake Model. Explanation of the GEM Taxonomy strings: CR+CIP = Cast-in-place reinforced 

concrete; MR+CBS = Reinforced masonry using solid concrete blocks; MCF+CBS = Confined masonry using solid 

concrete blocks; MUR+CLBRS = Unreinforced masonry using fired clay bricks; MUR+ADO = Unreinforced adobe 

masonry; MUR+STRUB = Unreinforced masonry using rubble or semi-dressed stones; W = Wood frame; CR+PC 

= Precast concrete; MUR = Unreinforced masonry (general) 

People affected and fatalities 
 
The number of people affected by earthquakes is defined as the population that can be 
expected to witness earthquake-caused ground shaking of Modified Mercalli Intensity (MMI) 
VI or higher (corresponding to strong shaking, capable of causing slight damage or higher). 
The average annual people severely affected by earthquakes is defined as the population that 
can be expected to witness earthquake-caused ground shaking of MMI VIII or higher 
(corresponding to severe ground shaking, capable of causing considerable damage including 
partial collapses in ordinary structures, along with slight damage to well-engineered 
structures). 

The number of fatalities due to earthquakes is estimated using GEM’s global database of 
analytical seismic fragility curves and vulnerability functions. Fragility curves describe the 
probability of exceeding a set of damage states conditional on a ground shaking intensity level, 
and are fundamental for the assessment of damage in earthquake scenarios. These functions 
are converted into fatality vulnerability functions for building occupants using a damage-to-
loss model, i.e. a relation between a given damage state for a particular building class and the 
corresponding fatality rate41 for the building occupants, leading to a distribution of the 
probability of fatality conditional on a set of ground shaking intensities. 

 

 
41 So, E. (2016). Estimating fatality rates for earthquake loss models. Springer International Publishing. 71pp. 
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Indirect economic damage 

 
Indirect economic damage is defined as the additional impacts beyond direct damage that 
result from earthquake shaking. These relate to economic disruption from damage to 
infrastructure and industrial facilities and the disruption to economic operations that result 
(e.g., difficulties for workers accessing the workplace leading to lowered productivity). The 
impacts increase for more severe events due to the length of reconstruction and demands on 
skilled trades and materials required for reconstruction. Following Hallegatte,42 the net present 
value of discounted indirect damages for earthquake was estimated using the following 
equation: 

(rN / rN + 3) × (1/μ) × (ΔK) 

where, 

• ΔK is the direct damage or loss of capital 
• r is the marginal productivity of capital 
• (r/μ) is the average productivity of capital 
• N is the number of years required for repair / reconstruction of >95% of the damaged 

assets. 

The marginal productivity of capital at the national level is estimated using the most recently 
available real rate of interest in the country. Average productivity of capital is calculated as the 
country's output‐side GDP divided by total reproducible capital within the country, following 
Hallegatte and Vogt-Schilb.43 These two variables are both available from the Penn World 
Tables for all CAREC countries except Afghanistan. For Afghanistan, we assume the default 
value of 0.3 for the average productivity of capital, as mentioned in Hallegatte (2015). The 
reconstruction period as a function of the return period is estimated based on another working 
paper by Rozenberg and Hallegatte (2016)44. A high scenario is used for the CAREC countries 
as reconstruction is generally expected to take longer in developing countries (Table 6). 

Table 6: Reconstruction time after a disaster event by return period and for the three scenarios. 

 Return period 
Scenarios 0-10 10-100 100-500 >500 

Low 0.5 1 2 3 
Medium 1 2 3 5 

High 3 3 5 10 
 

Since several return periods are being reported in the loss exceedance curves presented in 
the risk profiles and modeling, a function is used to estimate reconstruction times based on 
the return period that yields values along the high scenario estimates from the above table:   

N = [log₁₀(RP)]² 

Finally, the indirect AAL is calculated as the area under the loss exceedance curve. 

 
42 Hallegatte, S. (2015) The Indirect Cost of Natural Disasters and an Economic Definition of Macroeconomic 
Resilience. World Bank Policy Research Working Paper https://doi.org/10.1596/1813-9450-7357 
43 Hallegatte, S. and Vogt-Schilb, A. (2016) Are Losses from Natural Disasters More Than Just Asset Losses? The 
Role of Capital Aggregation, Sector Interactions, and Investment Behaviors. World Bank Policy Research Working 
Paper. https://doi.org/10.1596/1813-9450-7885  
44 Rozenberg, J. and Hallegatte, S. (2016) Modeling the Impacts of Climate Change on Future Vietnamese 
Households: A Micro-Simulation Approach. World Bank Policy Research Working Paper. 

https://doi.org/10.1596/1813-9450-7357
https://doi.org/10.1596/1813-9450-7885
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Flood 

Economic damage 

 
The Global Flood Model has been developed with a set of default regional and global 
vulnerability functions for different lines of business, including residential, commercial and 
industrial exposure. These vulnerability functions describe the relationship between flood 
depth and damage based on empirical studies, engineering data and other sources of 
information. The Global Flood Model vulnerability functions were developed based on two 
main sources of reference:  

• JBA's existing vulnerability functions developed from projects in Australia, Canada, PRC, 
Sierra Leone, Thailand, UK, US, and Vietnam. 

• Information from a recent research report on global flood vulnerability functions published 
by the European Commission’s Joint Research Centre (Huizinga, Moel and Szewczyk, 
2017).  

Initially, JBA default vulnerability functions for the region were used to generate the model 

outputs. The modelled results produced using the default functions were then compared with 

loss estimates for historic events. No vulnerability functions were found in the literature for any 

of the individual CAREC countries or region. As a result, modelled losses were validated 

against historic losses to assess the efficacy of the vulnerability relationships. Based on this 

comparison of modelled and recorded flood losses, and using the information available in the 

exposure data, the vulnerability functions were adjusted to take into account some of the 

specific building types in the region. Vulnerability functions were mapped to the building 

categories in the exposure data before model loss estimates were recalculated. Assessment 

of economic damage from flooding use vulnerability functions derived as part of the project. 

These functions determine the relationship between hazard intensity (flood depth) and 

damage.  

People affected and fatalities 

 
To determine the number of people affected by flooding, a threshold of 0.2m is used to set a 

level above which a property is considered to be flooded and the associated population 

(people per building) is considered to be ‘affected’. Population estimates were based on a 

point-based distribution of residential population at 1 km resolution from Global Human 

Settlement Layer (GHSL) data (value in 2015). Spatial distributions at sub-national level were 

derived from the GHSL data for all CAREC countries. A ratio between the GHSL and 2020 

UN population data was calculated at country level to scale up the spatial distribution to the 

2020 population counts. These counts were then summed for each top-level administrative 

division polygon. 

The categorization of people severely affected by flooding is used to indicate where flood 

impacts are sufficiently severe that properties are uninhabitable for a significant period of time 

(weeks or months). With this level of disruption, it is assumed that there are associated 

impacts on daily life (e.g., disruption to working life, temporary relocation to a different area 

increased travel time to work) and wellbeing (e.g., mental health impacts of dislocated 

communities, damage or loss of possessions). To indicate this level of impact, a second depth 

threshold was used in the flooding modeling, set at 1.0m, to identify those areas and properties 

where impacts on the population were likely to be severe. 
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Jonkman et al. (2008)45 review a range of studies linking flood characteristics with fatalities. 
Some of these consider the many factors that relate flood hazard to fatalities, including the 
type of flooding, the vulnerability of different population groups, the flood mitigations in place 
(e.g. flood defences, warning systems) and the timescale of the event. Many of these studies 
relate to a specific country, making application to the CAREC region questionable. No studies 
were found relating flood hazard to fatalities in the CAREC region. Due to lack of data to build 
a complex function relating flood hazard to fatalities, an empirical approach was taken.  

Fatalities from flooding have been calculated using functions that relate the cumulative number 
of people affected to the corresponding death toll, based on evidence from historical events 
for each CAREC country collected as part of the validation exercise for the flood modeling, 
where available. For two countries, Kazakhstan and Turkmenistan, this data was not available. 
In this case, the average ratio of the other nine CAREC countries was used (Table 7). 

Table 7: Table of fatality ratio to people affected for flood risk across the CAREC member countries 

Country Ratio of fatalities to people 
affected for flood 

Afghanistan 0.0005 

Azerbaijan 0.0001 

People’s Republic of China 0.00005 

Georgia 0.0068 

Kazakhstan 0.0025 

Kyrgyz Republic 0.0071 

Mongolia 0.0053 

Pakistan 0.0001 

Tajikistan 0.0015 

Turkmenistan 0.0025 

Uzbekistan 0.001 

 

Indirect economic damage 

 
Indirect economic damage is defined as the additional impacts beyond direct damage that 
result from flooding. These relate to economic disruption from damage to infrastructure and 
industrial facilities and the disruption to economic operations that result (e.g., difficulties for 
workers accessing the workplace leading to lowered productivity). The impacts increase for 
more severe events due to the length of reconstruction and demands on skilled trades and 
materials required for reconstruction. Following Hallegatte,46 the net present value of 
discounted indirect damages for flooding was estimated using the following equation: 

(rN / rN + 3) × (1/μ) × (ΔK) 

where, 

• ΔK is the direct damage or loss of capital 
• r is the marginal productivity of capital 
• (r/μ) is the average productivity of capital 
• N is the number of years required for repair / reconstruction of >95% of the damaged 

assets. 

 
45 Jonkman, S.N., Vrijling, J.K. and Vrouwenvelder, A.C.W.M. (2008) Methods for the estimation of loss of life due 
to floods: a literature review and a proposal for a new method. Natural Hazards, vol. 46, pp.353-389 
46 Hallegatte, S. (2015) The Indirect Cost of Natural Disasters and an Economic Definition of Macroeconomic 
Resilience. World Bank Policy Research Working Paper https://doi.org/10.1596/1813-9450-7357 

https://doi.org/10.1596/1813-9450-7357
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The marginal productivity of capital at the national level is estimated using the most recently 
available real rate of interest in the country. Average productivity of capital is calculated as the 
country's output‐side GDP divided by total reproducible capital within the country, following 
Hallegatte and Vogt-Schilb.47 These two variables are both available from the Penn World 
Tables for all CAREC countries except Afghanistan. For Afghanistan, we assume the default 
value of 0.3 for the average productivity of capital, as mentioned in Hallegatte (2015). The 
reconstruction period as a function of the return period is estimated based on another working 
paper by Rozenberg & Hallegatte (2016)48. A high scenario is used for the CAREC countries 
as reconstruction is generally expected to take longer in developing countries (Table 8). 

Table 8: Reconstruction time after disaster by return period and for the three scenarios. 

 Return period 
Scenarios 0-10 10-100 100-500 >500 

Low 0.5 1 2 3 
Medium 1 2 3 5 

High 3 3 5 10 
 

Since several return periods are being reported in the loss exceedance curves presented in 
the risk profiles and modeling, a function is used to estimate reconstruction times based on 
the return period that yields values along the high scenario estimates from the above table:   

N = [log₁₀(RP)]² 

Initially, default values proposed in the Hallegatte paper were used for the function. Because 
of lack of information on the disproportionate impacts to critical infrastructure, the “ripple effect” 
was set to zero. Interest rates for the CAREC countries lie in the range 4 to 16%, but it was 
decided to set this value at 20% to indicate the overall potential lost capital opportunities and 
the imperfect operation of capital markets.  

One of the most uncertain elements of the calculation is the reconstruction period. Three years 
is proposed in Hallegatte (2015), but, in other literature, recovery periods between 6 months 
and several years are suggested for a range of disaster scenarios such as the 2004 Asian 
tsunami. Selecting three years for the reconstruction period resulted in very high values of 
indirect losses for higher return period events, when compared to analyses for specific case 
studies such as the Mumbai floods of 2005 (return period estimated at 100 years) and 
hurricane Katrina in the same year (RP ~25 years). To account for the change in 
reconstruction and recovery period for events with higher return periods, and the range of 
estimates from the literature, an adjusted function was developed for calculating indirect 
economic loss. Finally, the indirect AAL is calculated as the area under the loss exceedance 
curve. 

Infectious Disease 

The application of catastrophe modeling techniques to the analysis of infectious disease 
requires the development of complex, dynamic models, which differ substantially from 
traditionally natural catastrophe models (such as earthquake and flood) in terms of how 
elements such as hazard and vulnerability are conceptualized, measured, and modeled.  

Vulnerability within the infectious disease modeling framework is related to a number of 
factors, including the attributes of the specific pathogen being modeled, and country-specific 
characteristics such as preparedness and policy responses. Within the Metabiota disease 

 
47 Hallegatte, S. and Vogt-Schilb, A. (2016) Are Losses from Natural Disasters More Than Just Asset Losses? The 
Role of Capital Aggregation, Sector Interactions, and Investment Behaviors. World Bank Policy Research Working 
Paper. https://doi.org/10.1596/1813-9450-7885  
48 Rozenberg, J. and Hallegatte, S. (2016) Modeling the Impacts of Climate Change on Future Vietnamese 
Households: A Micro-Simulation Approach. World Bank Policy Research Working Paper. 

https://doi.org/10.1596/1813-9450-7885
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spread model, vulnerability depends on pathogen-level characteristics including its case 
fatality ratio (overall, and for specific age bands), transmission dynamics, and the availability 
of vaccines or therapeutics. Vulnerability is also dynamic within each simulated event, 
changing on a daily time-step within the model: for example, individual vulnerability may 
decrease due to immunization or infection that confers immunity within the simulation, while 
localized population vulnerability may decline as the number of susceptible individuals within 
a simulated geographic area declines.  

Vulnerability at a country level is also influenced by preparedness to detect and respond to 
health emergencies: to identify a potential infectious disease risk, implement appropriate 
policy responses (such as social distancing), and, if feasible, implement pharmaceutical 
interventions. As noted above, preparedness is measured via an epidemic preparedness 
which takes into account both health system capacity as well as factors which enable (or 
constrain) effective response, including governance, financing, risk communications, and 
physical and communications infrastructure.  

Figure 9 Epidemic Preparedness Index Design49 

 

Within the modeling framework, each country’s epidemic preparedness index score influences 
the speed with which it implements non-pharmaceutical responses, and (if vaccines are 
relevant for the pathogen being modeled) the timing and rate at which it begins vaccination 
efforts. This creates substantially different vulnerability profiles across countries and over time. 

 

Uncertainties and limitations in the data and methodology 
 
The sparsity of building vulnerability surveys across the region contributes to uncertainty in 
earthquake vulnerability data. For instance, surveys undertaken in the Kyrgyz Republic and 
Tajikistan were used to inform the curves used here and in the surrounding countries of 
Kazakhstan, Turkmenistan, and Uzbekistan. Furthermore, in some cases building 
characteristics did not map neatly onto vulnerability typologies necessitating the use of an 
‘other’ vulnerability class. Where field surveys could not be consulted directly, relevant 
literature was sought and applied.  

 
49 Oppenheim, B., Gallivan, M., Madhav, N. K., Brown, N., Serhiyenko, V., Wolfe, N. D., & Ayscue, P. (2019). 

Assessing global preparedness for the next pandemic: development and application of an epidemic preparedness 

index. BMJ global health, 4(1), e001157. 
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No flood vulnerability functions were found in the literature covering the CAREC region. 
Accordingly, JBA default vulnerability functions were used to generate initial modelled losses 
and then calibrated against loss estimates for historic events. Uncertainties may arise during 
this approach given that there are relatively few historical loss events that are suitable for 
calibrating vulnerability curves. That said, the approach used was judged to be the most 
appropriate way to develop tailored vulnerability curves across the CAREC region given 
limited data availability. 

When calculating indirect economic damages from both earthquake and flooding, uncertainty 
arises from the use of the use of macroeconomic indicators (real rate of interest, GDP, total 
reproducible capital) which in reality would vary spatially across the country / region. Default 
values for these macroeconomic indicators were used in some cases (e.g., Afghanistan). 
Similarly, assumptions were necessary when quantifying the ‘ripple effect’, interest rates, and 
reconstruction periods. Reconstruction periods in particular can vary from months to years 
and have a marked impact on indirect damages. 
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Assessing the protection gap across the CAREC region 

Defining the protection gap 

The protection gap is traditionally defined as the proportion of losses from disaster events that 
are not insured. Identifying the level of risk which has not been reduced (through risk reduction 
investment) or transferred (through risk financing) is to identify the contingent liability that will 
need to be met in the event of a disaster. This is used as a fundamental input into the design 
of risk management and arrangement of risk financing. 

Data sources and methodology 

An assessment and quantification of the protection gap was undertaken across the CAREC 
region. The risks associated with earthquake and flood in each of the CAREC countries / 
regions was compared with the financing approaches available to governments, households, 
and businesses to help identify where and what type of additional disaster risk financing may 
be most valuable at the country and regional scale. The outcomes from this analysis are 
presented in the Protection Gap Assessment report. This section details the methodology that 
underpins that report (Figure 10). 

Figure 10 Assessment and quantification of the protection gap across the CAREC region. 

 

The probabilistic risk modeling completed under this Technical Assistance (and described 
above) was used to assess the direct losses and indirect costs face by each country / region. 
In this case, direct losses include damage to commercial, industrial, and residential property, 
while indirect costs consider ongoing reductions in business / household income due to 
disruptions (e.g., in supply chains). The human costs of earthquake and flooding events are 
also considered. 

Alongside country / regional level analysis, a brief sub-national analysis was also completed, 
comparing estimates of expected economic and human cost with sub-national data on 
poverty50, recognizing that poverty is likely to accentuate the vulnerability of the population to 

 
50 Where data is available, the sub-national estimates of poverty are taken from the Multidimensional Poverty Index 
from the Oxford Poverty and Human Development Initiative (https://ophi.org.uk/multidimensional-poverty-

 

i. apply catastrophe risk modeling to understand the direct and indirect 
economic losses for each country

ii. review existing ex-ante risk financing arrangements

iii. compare the gap between the modeled losses and ex-ante 
arrangements

iv. consider other available sources of financing to close the gap

v. summarise key insights for each country and the implications for 
involvement in a regional risk transfer facility

https://ophi.org.uk/multidimensional-poverty-index/#:~:text=The%20global%20Multidimensional%20Poverty%20Index,that%20a%20person%20faces%20simultaneously
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disaster events in ways that are not fully captured by catastrophe modeling. This allows the 
initial identification of sub-national ‘hotspots’ where both hazard risk is high and poverty, 
relative to elsewhere in the country, is also high. 

A qualitative assessment of the ex-ante risk reduction and risk financing mechanisms in place 
was performed. This includes looking both at provisions made at the sovereign and sub-
sovereign level, and the extent to which insurance solutions are adopted across different 
groups in society. 

The ‘protection gap’ is quantified as the difference between (i) the losses / costs faced by a 
given country, and (ii) the financing mechanism available to cover them. Two comparisons 
are made: 

• To determine the difference between average annual losses and the cover offered by 
existing risk retention and transfer mechanisms; and 

• To establish the return period loss events that, when accounting for losses that might be 
insured, would exhaust the available risk retention mechanisms 

In the second case, the ‘losses that might be insured’ are examined in three ways: 

• assuming that the risk retention mechanisms need to cover both the uninsured direct 
losses and indirect costs (as described above); 

• assuming that risk retention mechanisms need to cover only the uninsured direct losses 
that events might cause; and  

• assuming that risk retention mechanisms need to cover the emergency response costs 
associated with different events.51 

Other sources of finance available to governments, households, and businesses to meet the 
financial costs of disaster events were then considered. At the sovereign level, this involves 
an examination of the macroeconomic context of the country and, where data is available, its 
financial response to previous disaster events. At the level of households and businesses, the 
assessment is predominantly carried out through a review of the extent of financial inclusion 
in the country which provides a proxy for their ease of accessing finance. This is 
complemented by an assessment of social protection provision, recognizing that social 
protection is often an essential way for vulnerable individuals and households to cope with 
disaster events52, while recognizing at the same time that such mechanisms will also increase 
contingent liabilities at the sovereign level. 

Finally, each of the above steps are drawn together to provide a summary of the key insights 
for each country and the implications for involvement in a regional risk transfer facility. 

 
index/#:~:text=The%20global%20Multidimensional%20Poverty%20Index,that%20a%20person%20faces%20sim
ultaneously.) This is the preferred data sources as it complements monetary poverty measures by capturing 
deprivations in health, education and living standards that a person faces simultaneously. The dataset also 
provides information on the number/proportion of people living in poverty. However, this dataset is not available for 
all CAREC countries so, where necessary, data on the human development index score at the sub-national level 
was used instead (https://globaldatalab.org/shdi/shdi/). The human development index aggregates information on 
life expectancy, education and per capita income and converts this to an index score of between 0-1 with scores 
closer to 1 representing higher levels of human development.   
51 It is assumed that emergency response costs are equal to 23% of the direct losses of a flood event and 16% of 
the direct losses of an earthquake event, based on industry practice derived from an analysis of historic events. 
Insurance penetration is not taken into account when assessing the extent to which risk retention will cover 
emergency response costs.  
52 World Bank (2019) Social Protection and Disaster Recovery. Accessible at: 
https://www.gfdrr.org/sites/default/files/publication/Social_Protection_Guidance_Note_FINAL.pdf 

https://ophi.org.uk/multidimensional-poverty-index/#:~:text=The%20global%20Multidimensional%20Poverty%20Index,that%20a%20person%20faces%20simultaneously
https://ophi.org.uk/multidimensional-poverty-index/#:~:text=The%20global%20Multidimensional%20Poverty%20Index,that%20a%20person%20faces%20simultaneously
https://globaldatalab.org/shdi/shdi/
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Modelling disaster risk reduction and climate adaptation 

measures 

As part of this TA, disaster risk reduction and climate adaptation modeling will be performed 

using the CLIMate ADAptation (CLIMADA) modeling platform.53 In addition to facilitating 

dialogue with the CAREC member states throughout the duration of this project and beyond, 

this work will demonstrate more generally the value of CLIMADA in taking the outputs of fully 

probabilistic risk models and investigating the comparative benefit of alternative disaster risk 

reduction and climate adaptation measures. 

Data sources and methodology 

CLIMADA provides a framework for users to combine exposure, hazard and vulnerability data 

to calculate risk. It is an open-access model that is designed to be highly flexible to user need. 

Furthermore, CLIMADA includes the ability to conduct cost-benefit analysis of varied disaster 

risk reduction and adaptation measures. A CLIMADA model has been developed to enable 

country-specific assessment of earthquake and flood risk and to compute the relative cost-

benefit of a selection of disaster risk reduction measures. 

The CLIMADA model developed for this project combines earthquake and flood hazard maps 

generated by the JBA and GEM fully probabilistic source models with point-based build asset 

data, and country-specific vulnerability curves.  

Table 9 shows the areas of concentrated exposure that are included within the CLIMADA 

model. Most locations are country capitals, to capture areas with the highest value at risk. In 

some countries alternative urban areas have been selected due to nature of the hazard (e.g., 

Pakistan) or exposure (e.g., Kazakhstan). 

Table 9 Areas of concentrated exposure included within the CLIMADA modeling framework. 

Country 
Area of concentrated exposure 

Flood Earthquake 

Afghanistan Kabul Kabul 

Azerbaijan Baku Baku 

Georgia Tbilisi Tbilisi 

Kazakhstan Almaty Almaty 

Kyrgyz Republic Bishkek Bishkek 

Mongolia Ulaanbaatar  Ulaanbaatar 

Pakistan Karachi Islamabad 

PRC, Inner Mongolia Autonomous 
Region 

Baotou Baotou 

 
53 Aznar-Siguan, G. and Bresch, D.N., 2019. CLIMADA v1: a global weather and climate risk assessment platform. 
Geosci Model Dev.12(7), 3085-3097. https://doi.org/10.5194/gmd-12-3085-2019  

https://doi.org/10.5194/gmd-12-3085-2019


 
 

41 
 

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission. 

PRC, Xinjiang Uyghur Autonomous 
Region 

Ürümqi Ürümqi 

Tajikistan Dushanbe Dushanbe 

Turkmenistan Ashgabat Ashgabat 

Uzbekistan Tashkent Tashkent 

CLIMADA collates various input datasets which are stored within the CLIMADA model 

structure. All datasets except the flood and earthquake hazard layers are contained within an 

Excel workbook (.xlsx) and can be readily modified. The simplicity of this set-up ensures 

continued usability of the CLIMADA model beyond the completion of this TA. Table 10 

summarizes the inputs to the CLIMADA model.  

Table 10 Summary of datasets to be integrated using the CLIMADA platform. 

Type Dataset(s) Source Format 

Hazard 

Flood hazard layers at six return 
periods: 20-yr, 50-yr, 100-yr, 200-yr, 
500-yr, 1500-yr. 

JBA 
Raster 
(GeoTIFF, a 
spatial dataset 
containing 
hazard values 
at a constant 
resolution) 

Earthquake hazard layers at six 
return periods: 50-yr, 100-yr, 200-yr, 
500-yr, 1000-yr, 2500-yr. 

GEM 

Exposure Building structural asset values. 
Oasis Exposure 
Data standard 
format. 

Comma 
separated 
values (CSV) 

Vulnerability 

Damage function comprising 
intensity (flood depth, m) and 
damage ratio. 

JBA 
Comma 
separated 
values (CSV) Damage function comprising 

intensity (peak ground acceleration, 
g) and damage ratio. 

GEM 

Adaptation 
Measures 

Selection of adaptation measures 
and details of their impact upon the 
hazard, exposure, and/or 
vulnerability. 

UNU 
Excel 
workbook 
(.xlsx) 

Climate 
scenarios 

Future climate scenarios to 2050 for 
Representative Concentration 
Scenario (RCP) 4.5 and 8.5. 

ODI 
Excel 
workbook 
(.xlsx) 

Socio-
economic 
scenarios 

Future socio-economic scenarios 
based on GDP and or population 
change. 

World Bank 
Excel 
workbook 
(.xlsx) 
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The hazard inputs to CLIMADA are return period hazard maps for flood and earthquake, 

generated using JBA and GEM fully probabilistic source models. Rather than representing 

specific events, these return period maps show the probability of a given pixel experiencing, 

for example, a 1 in 200-year event. The return period maps are provided for flood and 

earthquake at six return periods. 

The exposure or ‘asset’ input to CLIMADA comprises a point-based dataset associated with 

commercial, residential, and industrial building values. The exposure dataset is based on the 

GEM Global Exposure Database.  The exposure database contains information regarding the 

number of buildings, geographical location, replacement costs (including the structural and 

non-structural components, and the building contents), number of occupants and vulnerability 

classes of the building stock. The GEM Building Taxonomy (Version 2.0) was used to classify 

the building stock in the CAREC member countries. Each exposure point has a code which 

allows it to be associated with an appropriate impact function for flood and earthquake hazard. 

Vulnerability or ‘damage function’ information was collected for each area of concentrated 

exposure. A single damage function was used for flood risk modeling, based on the 

vulnerability of residential buildings in each country. For the earthquake risk modeling, 

appropriate damage functions were selected based on the occupancy class (commercial, 

industrial, residential) and building structural characteristics (e.g. reinforced concrete, 

unreinforced masonry, etc.). 

Climate scenarios can be applied to the flood risk analysis based on observed and projected 

rainfall intensity duration frequency curves. Regional Climate Model-Global Climate Model 

(RCM-GCM) simulations from the Coordinated Regional Climate Downscaling Experiment 

(CORDEX) were used to examine climate change impacts on precipitation. This included two 

RCM-GCM simulations from the CORDEX Central Asian domain, six models from the 

CORDEX South Asia domain, and four models from the CORDEX East Asia domain. Two 

Representative Concentration Pathways (RCP4.5 and RCP8.5) were selected; these 

respectively represent a medium and high (business-as-usual) emissions pathway. The RCMs 

were bias corrected before precipitation projection analysis of how conditions could shift 

between the 2050s (2031-2070) and a historical reference period of 1956-1995.54 The multi-

model mean information was used to examine yearly and seasonal changes under RCP4.5 

and RCP8.5. No future climate change can be applied to earthquake risk modeling. 

Future socio-economic scenarios can be applied to both the flood and earthquake risk 

modeling. Future socio-economic change is used to alter the future exposure values based 

on GDP growth rate and population change projections. Future economic growth rate was 

estimated by calculating the mean GDP growth rate (constant to 2010 prices) over the period 

2000-2019.55 Future population growth rates are from the Population Division of the 

Department of Economic and Social Affairs of the United Nations.56 

 
54 The historical reference period of 1956-1995 was used over the standard 30-yr period 1961-1990 because 
climate over Central Asia is modulated by the Atlantic Multidecadal Oscillation and this reference period is long 
enough to cover two phases of the AMO, among other multidecadal climate processes. The 2050s (period 2031-
2070) were chosen for the flood model (and climate modeling) as a more policy relevant period than the more 
distant 2070s, and a climate change signal is detectable. 
55 World Bank. 2021. GDP (constant 2010 US$). Accessed at: https://data.worldbank.org/indicator/NY. 
GDP.MKTP.KD  
56 Population Division of the Department of Economic and Social Affairs of the United Nations. 2018. World 
Population Prospectus 2018. Accessed at: https://population.un.org/wup/  

https://data.worldbank.org/indicator/NY.%20GDP.MKTP.KD
https://data.worldbank.org/indicator/NY.%20GDP.MKTP.KD
https://population.un.org/wup/
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Adaptation measures were selected from a set of representative adaptation options compiled 

by the CLIMADA development team at the United Nations University (UNU) (Table 11). These 

adaptation options can be readily modified to reflect particular plans in any given area of 

concentrated exposure. 

Table 11 Description of earthquake and flood disaster risk management / climate adaptation 
measures as modelled using CLIMADA. 

 Earthquake Adaptation Measures Flood Adaptation Measures 

1 
Building codes. Assuming that new buildings 
comply with a given level of earthquake 
resistant building code. 

Channel maintenance. Includes removing 
sedimentation / deepening and widening 
channel / clearing debris. 

2 

Retrofitting. Applying measures that elevate 
the earthquake resistance of existing 
buildings. 

Ecological restoration. For example, 
increasing permeable surface cover, planting 
trees and restoring waterways. 

3 

Insurance. Applied as a simple sovereign 
insurance cover that attaches at approx. 1 in 
100-year loss and exhausts at approx. 1 in 
200-year loss. 

Flood awareness. For example, campaigns 
to educate people about actions that can be 
undertaken to reduce flood impacts. 

4  
Waste management. Implementing 
approaches to deal with wastewater flows. 

5  

Insurance. Applied as a simple sovereign 
insurance cover that attaches at approx. 1 in 
25-year loss and exhausts at approx. 1 in 
100-year loss. 

Benefit-cost ratios for each of the DRR measures are computed as total averted loss divided 

by total measure cost over a defined time period, in this case from present to 2050. Benefits 

accrue over the period from present to 2050, taking into account a discounting rate (set at 

default of 2%), while costs are assumed at net present value. The baseline case assumes 

constant exposure and hazard into the future. 

The modeling undertaken here quantifies both earthquake and flood risk across the CAREC 

countries and presents the relative benefit-cost of a selection of representative adaptation 

measures. Such information helps to demonstrate the value of further detailed disaster risk 

reduction modeling and can contribute towards a broad-based disaster risk management 

agenda. 

The CLIMADA model developed during this TA will remain functional beyond project 

termination. The legacy CLIMADA model will retain full flexibility, enabling the end-user to 

upload revised hazard, exposure and vulnerability data, to alter model assumptions (around 

future exposure growth, for example), and to amend or add to the current disaster risk 

reduction and adaptation measures. A separate technical guide has been prepared to 

accompany the legacy CLIMADA model. Full model documentation is available at: 

https://climada-python.readthedocs.io/en/stable/index.html.  

Uncertainties and limitations in the data and methodology 

The disaster risk reduction and climate adaptation modeling undertaken for this TA covers 

twelve cities across the eleven CAREC member countries and regions. Given this extensive 

https://climada-python.readthedocs.io/en/stable/index.html
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geographic coverage, the modeling undertaken in any one given city is necessarily illustrative. 

When interpreting model outputs, it is therefore important to be aware of certain uncertainties 

and limitations: 

• This modeling covers selected areas of concentrated exposure. Model outputs provide 

an indication of the risk reduction value of selected measures over a limited area and 

should not be used to make statements at the country or regional scale. 

• Hazard input is based on a series of return period hazard maps. CLIMADA then 

interpolates between the input return periods to calculate intermediate losses. While 

this is a reasonable approach, it is not necessarily a true reflection of how losses scale 

with hazard intensity. 

• A selection of ‘standard’ adaptation earthquake and flood measures have been 

modelled. The selected measures do not reflect the economic, social, political, or 

physical appropriateness of measures in any given city. The costs and effectiveness 

of adaptation measures are predicated on previous field studies conducted by the 

CLIMADA modeling team and adjusted for the CAREC region. The CLIMADA model 

does not account for the spatial distribution of adaptation measures. Further 

refinement over the choice, cost, and effectiveness of measures should be considered 

on a country basis. 

• Future socioeconomic growth is based on macroeconomic indicators calculated at the 

country level, since 2000. In reality, past socioeconomic growth may not accurately 

reflect future growth and future growth may vary spatially within a country or region. 

The disaster risk reduction and climate adaptation modeling undertaken here provides a 

consistent view of the potential effectiveness of selected measures for reducing earthquake 

and flood risk across the CAREC region. 
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Conclusion and Implications 

The risk modeling undertaken as part of this TA represents the most sophisticated modeling 

that has been undertaken in the region to date. As a result, the regionally consistent modeling 

approach is valuable precisely because it appraises flood, earthquake, and infectious disease 

risk in each CAREC member state on the same terms. As the first attempt to quantify disaster 

risk in the region, it is important that this approach is open for investigation and replicable for 

future risk assessments. For example, the open nature of the modeling means the work 

conducted under the World Bank Multi-Peril Risk Assessment project, of which five are 

CAREC member states, is complementary. The granular nature of the World Bank project will 

permit review and comparison of the two approaches.  

The core objectives of the risk profiling and the detail of the modeling approach in this 

document are (i) to improve understanding of disaster risk and disaster risk management, and 

(ii) to support the development of a regional disaster risk transfer facility. 

One of the key challenges involved in extending high-resolution probabilistic modelling across 

the CAREC region is the limited availability of high-quality hazard, exposure, vulnerability, and 

loss data. This information is a critical input to models, as well as to guide their calibration and 

validation to ensure that risk is adequately captured. Improved data collection, storage, and 

sharing procedures should be a priority going forward. Incentivizing these activities, and 

embedding them in appropriate responsible institutions, will enable future refinements to risk 

models, and improved accuracy in model outputs. The momentum from the design and 

implementation of a regional risk transfer facility will further strengthen these incentives. 

Notwithstanding the uncertainties and limitations detailed throughout this document, the risk 

modelling conducted under this TA has delivered a considerably enhanced understanding of 

earthquake, flood, and infectious disease risk across the region. This provides a sound basis 

for discussions with key stakeholders across the region, recommendations surrounding 

disaster risk financing, and future priorities to support increased resilience in the future. 

 


