

6th Railway Working Group Meeting

17-18 October 2022 • Almaty, Kazakhstan

6-е заседание Рабочей группы по железнодорожному транспорту 17-18 октября 2022 г. • Алматы, Казахстан People's Republic of China Poverty Reduction and Regional Cooperation Fund

Costs & Price Calculation in Rail Transport

Mr. Udo Sauerbrey, Railway Commercialization and Reform Specialist

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Rail Sector Cost and Revenue Structure

Freight business is "**cash cow**" whereas passenger is unprofitable and infrastructure is cost centre only.

Rail Sector Cost and Revenue Structure

Freight profit needs to contribute to infrastructure and passenger "loss".

Rail Sector Main KPI

Infrastructure KPI:

\$ / track-km
\$ / train-km
\$ / (t+p/km)

Freight KPI:

\$ / ton or TEU \$ / train-km \$ / tkm

Passenger KPI:

\$ / seat-km \$ / train-km \$ / pkm

Rail Sector Costs

Infrastructure Cost Driver:

- Maintenance costs / track-km
- tons / track-km
- CAPEX Renewal requirements
- Electrification, CCS*, tunnels/ bridges, stations

Freight Cost Driver:

- Traction / km
- Energy / km
- Asset utilization
- Slot quality
- Asset reliability & availability
- Staff cost

Passenger Cost driver:

- Traction / km
- Energy / km
- Asset utilization
- Slot quality
- Asset reliability & availability
- Staff cost

*CCS: Command, Control and Signalling Systems

Rail Sector Costs

Infrastructure Costs:

\$ / track-km p.a. = 30.000 - 90.000

\$ / train-km = 10-15

Freight Train Costs:

\$ / train-km = 15 – 30

Passenger Train Costs:

\$ / train-km = 10 – 25

Infrastructure Costs

Rail infrastructure costs can be divided in several blocks

* Structures: Electrification, CCS, Bridges, Tunnels, Stations ** Time tabling, capacity allocation and dispatching

Rail Infrastructure Cost Shares

* New Construction, Modernization, Renewal, Upgrade

Rail Infrastructure Maintenance Costs

Rail Infrastructure Maintenance Costs

Maintenance/Repair	Traffic	Maintenance Intervals
Tamping	40 - 70 Mio. tons	3 - 5 years
Track grinding	20 - 30 Mio. tons	1 - 3 years
Track renewal	300 - 1000 Mio. tons	10 - 15 years
Renewal of wooden sleeper	250 - 600 Mio. tons	20 - 30 years
Renewal of concrete sleeper	350 - 700 Mio. tons	30 - 40 years
Fixings	100 - 500 Mio. tons	10 - 30 years
Ballast renewal	200 - 500 Mio. tons	20 - 30 years
Substructure renewal	> 500 Mio. tons	> 40 years

Rail Infrastructure Maintenance Equipment Costs Example: Tamping

Capital expenditure	new (costs in \$/km)	old (costs in \$/km)
Depreciation	114,26	-
Financing cost	51,42	-
Overhaul	7,62	37,55
Repayment	-	-
Total CAPEX	173,30	37,55
Operating expenditure		
Maintenance cost	85,70	422,47
Personnel cost	240,64	790,86
Energy cost	29,07	63,00
Total operating costs	355,41	1.276,33
Total costs per km	528,71	1.313,88

Rail Infrastructure Maintenance Equipment Costs

- Modern tamping machines can tamp up to 4-5 km per day
- The higher the machine utilization, the lower the cost per km

Machine	km performed	No of days worked	km per working day	Share of working days
CSM 3006	163,5	170	0,96	77%
CSM 3506				0%
CSM 6486	213,45	195	1,09	89%
CSM 6782	379,9	288	1,32	131%

2019 situation

	Preventive Tamping	BaU Tamping	
Total tamping	770	252	km/a
Costs per km per year	1.254	3.614	AZN/km
Total costs per year	965.580	910.728	AZN

The Infrastructure Cost Situation - Example

Spent today

USD p.a.	Total cost p.a.	Costs per Train-km	Costs share
Maintenance costs lines	4.606.561	0,56	11%
(Maintenance costs catenary)	0	0,00	0%
Depreciation lines	13.692.629	1,67	32%
Personnel costs	10.401.104	1,27	25%
Energy costs	506.973	0,06	1%
Administration costs	9.090.909	1,11	22%
Overhead headquarters &			
security	3.965.604	0,48	9%

Incl. Maintenance needs

Total cost p.a.	Costs per Train-km	Costs share
34.090.909	4,15	36%
18.181.818	2,21	19%
13.692.629	1,67	14%
10.401.104	1,27	11%
506.973	0,06	1%
11.363.636	1,38	12%
5.000.000	0,83	7%
209.035.901	11,57	100%

Total costs	92.980.316	5,15	100%

Result	-92.980.316

Train-km p.a.	18.068.720
Costs per train-km	4,66
Line km	2.068,00
electrified line km	1.233,00
Costs per line km	30.394,84

-209.035.901

18.068.720
10,74
2.068
1.233
86.514,56

Freight Costs: Track Access Charges

÷

Marginal costs Costs directly caused by the operation of each train

Full costs Additional levies to cover all infrastructure costs, only to the extent which the market can bear

Other elements

E.g. incentive schemes for trouble-free operations or environmental protection

+

Track Access Charges

Freight is unlikely to cover full infrastructure costs!

Freight Costs

Freight Costs: Allocation of Fix Costs

Knowing the full asset cost is the key!

Example: Locomotive

Purchase price: 5.000.000 \$

Costs p.a.:Depreciation (25 y):Financing (5%):Overhaul (700k after 10 y):

Maintenance (4%): Annual costs: Per month: **Per day:** 200.000 \$ 250.000 \$ 70.000 \$ 520.000 \$ 200.000 \$ 720.000 \$ 60.000 \$

2.000 \$

Performance of locomotive:

8 \$ / km
4 \$ / km
2 \$ / km

Performance depends on:

- Slot quality / avrg. Speed (Infrastructure)
- Maintenance time / availability of locomotive (Workshops)
- Loading / unloading facilities (turnaround-time) (Terminals)

Freight Costs: Energy Consumption

Energy costs are one of the main variable costs factors. Influencing factors are:

- Diesel or Electric Energy makes a big investment difference
- Profile of the line / track quality
- Driver skills
- Slot quality / number of stops
- Weight of train

Source: Perez-Martinez; 2012, Journal of int Transportations systems

The Distribution of Cost Factors

Depending on the type of rail service offered, the share of cost types is different

Numbers from BAG-SPNV (German regional transport association)

Numbers from an exemplarily rail freight transport case

Cost factors in freight transport

The Calculation of Costs

Three cost allocations need to be done

Infrastructure department	Freight department	passenger department	
 Track maintenance Station maintenance Bridges and civil works Signalling Capacity management Etc. 	 Locomotives Freight wagons Drivers, engineers, staff TAC Energy Etc. 	 Locomotives or EMU Passenger wagons Drivers, conductors, staff TAC Energy Etc. 	costs
TAC(Subsidies)	 Freight revenues 	Ticket revenues(PSO revenues)	revenues

141

The 'KPI Cockpit'

Measure and observe their development!

The Calculation of Costs

17 trips

11 trips

Mo Railistics Wiesbaden Bw: Est:						UU	Umlaufplan Umlaufplan Baku-Sumgayit																			
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1	18	19	20	21	22	23	
1																	600	77								1
So 3 Sum									600 Sum 1	8 60 BAKU	005 60 Sum 1	14 BAKU	_				BAKU	60 Sum	16 BAI	6011 KU Su	8020 8 n BAK	5019 U Sum				Di 1 Sum
320,0 km									0 4	2 55	40 50	32					0	40 55	37	5 45	50 32 4	0 20				320,0 km
2																				60	13					2
So 1 Sum								60 Sum	02 600 BAKU	1 60 Sum 1	10 BAKU									BANU	Sum					Di 2 Sum
160,0 km								10	52 0 4	0 50	32									30	10					160,0 km
3																					015					3
So 2 Sum								Su	6004 m BAKU											BAKU	60 Sum	BAK	8021 J Sum			Di 3 Sum
160,0 km									\$0 12											4	5 25 30	12 3	50 10			160,0 km
4									6006	6003									600	09						4
So 4 Sum								1	Sum B	Su	6012 m BAKI								BAKU	6014 Sum B	6017 AKU Si	um				Di 4 Sum
240,0 km									45 27	30 10	17 59								30	10 18	0 10 50	0				240,0 km

17 trips

The Calculation of Costs

11 trips

17 trips

USD p.a.	. Total cost 11 trips p.d.	Costs per Train- km	Costs share	Total costs 17 trips p.d.	Costs per train- km (optimized)	Costs share optimized
Depreciation rolling stock	1.834.848	6,25	65%	1.834.848	3,70	61%
Interest Rolling Stock	0	0,00	0%	0	0,00	0%
Maintenance costs	108.098	0,37	4%	182.765	0,37	6%
Personnel costs	54.218	0,18	2%	59.640	0,12	2%
Energy costs	86.520	0,29	3%	146.283	0,29	5%
Cleaning costs	43.440	0,15	2%	57.483	0,12	2%
Marketing/Sales costs	159.534	0,54	6%	171.076	0,34	6%
Administrative costs	342.999	1,17	12%	367.814	0,74	12%
Overhead headquarters & security	182.231	0,62	6%	200.000	0,68	7%
						1
Total costs	2.811.889	9,58		3.019.911	6,36	
_			1			
Revenue	438.893	1,5		548.616	1,1	215
Result	-2.372.997	-7,5		-2.271.295	-4,58	had

The Calculation of KPI

Train-km p.a.	293.600
Nu. of op. staff (driver and	
conductors)	20
Roundtrips per year	3.670
Operating hours p.a.	4.893
Personnel hours p.a.	32.296
Seat km available per year	117.440.000
passenger km per year	34.899.920
Number of EMU	5
No of roundtrips	10
No of conductors per train	4
No of passengers	1.163.331
Manat per trip	1
Manat per year	965.564
Average travel distance (km)	30
Capacity utilization	30%

17 trips
496.400
00

KPI	
train km Costs in Manat	8,96
Km per EMU Unit	58720
Costs per seat km (Manat)	0,0224
revenue per passenger km	0,0126
Costs per operating hour	537,40
Costs for staff per train/km	0,18
Average passenger per train	317

Costs per passenger	2,42
revenues per passenger	0,38

5,68
99280
0,0142
0,0126
340,84
0,12
234

2,08	
0,38	

Revenue management can maximise the earnings

In the ideal situation:

price = willingness to pay (WTP)

In a monopoly situation the RU can achieve the full producer surplus

WTP is low for products in hard price competition (e.g. products suitable for trucking)

WTP is high if rail is without any alternative (e.g. heavy mass goods)

WTP is low for new clients

WTP is high for additional services

Example for setting prices according to costs and WTP of clients

Example for gaining new clients with dynamic pricing

Example for increasing margin with monopoly prices

The willingness to pay is sometimes hard to determine

Trucking rates are a good indicator

Often WTP for rail is significantly below the trucking rate

- due to a reduced flexibility
- and often reduced punctuality with rail transport

To initiate the modal shift, a benefit is necessary!

