

Road Asset Management Systems

Session 2: Data Collection

Serge Cartier van Dissel October 2022

Day 1	Day 2			
Session 1	Session 5			
Introduction to RAMS	RAMS Action Plan			
Coffee break	Coffee break			
Session 2	Session 6			
RAMS Data Collection	RAMS Action Plan			
Lunch	Lunch			
Session 3	Session 7			
RAMS Data Management	RAMS Institutionalization			
Coffee break	Coffee break			
Session 4	Session 8			
RAMS Data Analysis and Planning	Conclusions and next steps			

- A RAMS requires data
 - The data needs to be up-to-date (depends on type of data)
 - The data needs to be complete (entire network)
 - The data needs to cover the data types required for the function of the RAMS
 - The data needs to be reliable
 - The data needs to be sufficiently accurate for the function of the RAMS

Data collection

- Data collection is one of the weakest parts of any RAMS
 - Data collection costs money, time
 - New technologies reduce data collection costs
 - Automated traffic counters
 - Automated pothole and crack identification
 - Lidar
 - Smartphone applications
- RAMS with missing/outdated data becomes useless
 - Especially condition data quickly becomes outdated

Data collection

- Keep data collection to a minimum
 - Avoid high data collection costs
 - <u>Do not</u> collect data unless you expect to use it
- Some data can be collected at no/little extra cost
 - Example: video data together with IRI survey data
 - Data processing still has a cost
- Balance data needs with collection costs

Network vs Project data

- RAMS is a network planning tool (general data for entire network)
 - Identify general needs and related costs
 - Prioritize allocation of available budget to specific roads or links
 - Propose future maintenance, rehabilitation and upgrading projects
 - Requires data for entire (sub-)network
 - Limit data to be collected to avoid high costs
 - Data collection may become more detailed as RAMS evolves and data collection technologies improve and become less costly
- Different from project planning (detailed data for few roads)
 - Project road (link) selected through network planning
 - Project preparation requires data only for the project road (link)
 - Requires more detailed data specific to the project
 - Collecting project data for entire network would be very costly much of the data would not be used (only for project road links)

Data Accuracy

- More accurate data costs more to collect
 - More accurate data does not necessarily improve the results
 - IRI data can be collected through smartphone or laser profilometer
 - Technology improvements make more accurate data less expensive

Information Quality Level (IQL)

- IQL 1 = Research
- IQL 2 = Detailed programme, project-level engineering (laser profilometer)
- IQL 3 = Detailed network-level planning (bump integrator)
- IQL 4 = General network-level planning, pavement performance (smartphone, visual)
- IQL 5 = Network performance monitoring
- How accurate do we need the data to be?
 - High accuracy level
 - Medium accuracy level
 - Low accuracy level

IRI 3.6 = IRI 3.3-3.9

IRI 3.64 = IRI 3.61-3.67

IRI 3 = IRI 2-4 (Good, Fair, Poor)

Data Reliability

- Data needs to be reliable
 - Keep data errors within the predefined accuracy
 - Poor reliability can reduce the level of accuracy by an unknown factor
- Calibration of survey equipment
 - High accuracy equipment can give wrong data if not properly calibrated
 - Roughness apps have very varying accuracies depending on the vehicle used
 - Use equipment in defined operating ranges
- Avoid human errors
 - Avoid manual copying of data ensure automatic data imports
 - Avoid fatigue assess surface distress from video instead of directly on the road
 - Ensure replicability of data collection properly store all raw data
 - Check resulting data for errors or inconsistencies

Data types

- General data
- Inventory data
- Traffic (and accident) data
- Condition data
- Project/Contract data (past, ongoing, planned)

General data

- General data
 - Road code
 - Road name (start end)
 - Administrative road class
 - Construction year
 - Last repaving year
 - Responsible management entity
 - Administrative divisions GIS data (province, municipality, oblast, state, district, etc.)
 - Population data (location, number, density, etc.)
 - Rainfall (by class)
 - City/Town/Village GIS locations
 - Background GIS data (maps, satellite photographs)
 - etc.
- Collected from secondary sources

Inventory data

- Road inventory
 - Length (start + end chainage)
 - GPS location (coordinates)
 - Surface type
 - Carriageway width
 - Number of lanes
 - Terrain class
 - Technical class
 - Shoulder width
 - Drainage type
 - etc.
- Collected through surveys
- Does not change rapidly

- Bridge inventory
 - Bridge type
 - Length
 - Width
 - GPS location
 - Chainage
 - Deck material
 - Number of spans
 - Abutment type
 - etc.
- Other structures
 - Culverts
 - Retaining walls
 - etc.

Traffic and accident data

- Traffic data
 - Number of vehicles per day
 - Preferably by vehicle class
 - Road (link) code
 - GPS location
 - Survey date
 - Survey type
 - Survey duration
 - Traffic category
 - etc.
- Collected through manual/ automated traffic counts
- For different roads or road links

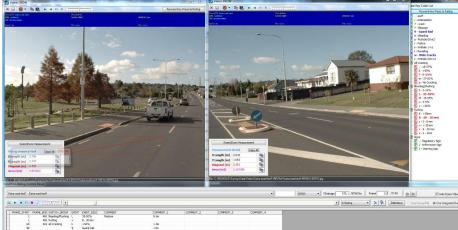
- Accident data
 - Accident date
 - GPS location
 - Number of fatalities
 - Number of serious injuries
 - Type of accident
 - etc.

• Collected from traffic police?

Condition data

- Surface condition
 - Roughness (IRI)
 - Surface distress
 - Potholes
 - Cracking
 - Rutting
 - Edge break
 - Patching
 - etc.
 - Deflection
 - Gravel thickness
- Collected through surveys
- Can change rapidly
- Either measured or as condition class

- Structure condition
 - Bridge condition
 - Deck
 - Abutment
 - Bearings
 - Beam
 - etc.
 - River/coastal protection condition
 - Culvert condition


Project and Contract data

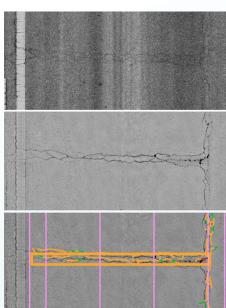
- Project/Contract data
 - Project/Contract code
 - Road (link) code
 - Location (start + end chainage)
 - GPS location (coordinates)
 - Treatment type(s)
 - Start/end date
 - Estimated cost/Contract price
 - Funding source
 - Contract documents
 - Contractor registration number
 - Contractor name
 - etc.
- Collected from planning or procurement unit

Video and Photo data

- Video and photo data can easily be collected as part of other surveys
- Important that it is georeferenced
 - Possible to indicate location on GIS map or Google Earth
- Allows for post-processing from the office
 - Inventory data (e.g. surface type, bridge, terrain category, etc.)
 - Condition data (e.g. surface distress, damages to structures)
 - Traffic data (e.g. moving traffic counts)
 - High replicability
- Use can be made of specific software for post-processing

Data needs overview

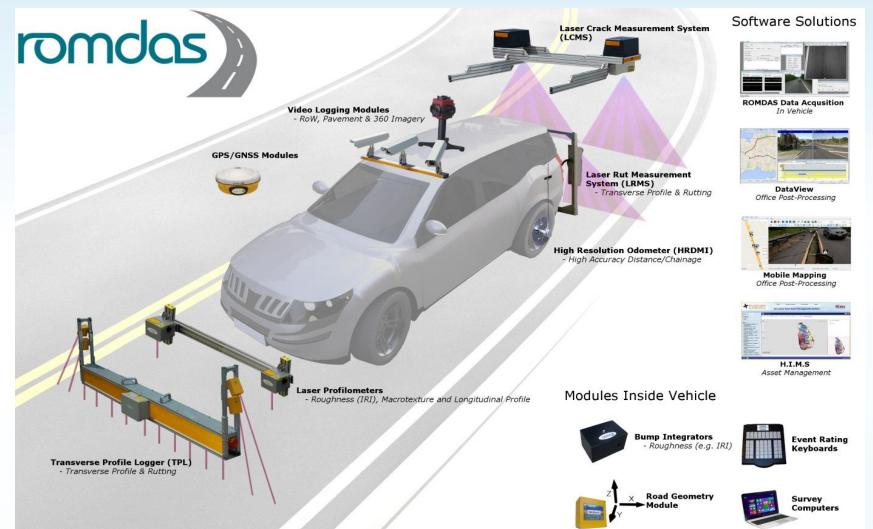
Central Asia Regional Economic Cooperation Program


CAREC

ROADS	ТҮРЕ	UNIT	SOURCE	REMARKS	FREQUENCY
dministrative class	Link	Category	DRBFC data, legal documents	A, C, D, E	5 years
lanagement entity	Link	Category	DRBFC data, legal documents	MPW/DRBFC, Municipality, Private	5 years
Iunicipality	Segment	Category	GIS administrative boundary data	Municipality list	5 years
dministrative Post	Segment	Category	GIS administrative boundary data	Administrative Post list	5 years
исо	Segment	Category	GIS administrative boundary data	Suco list	5 years
oad code	Link	X##	DRBFC data, legal documents	Existing codes	5 years
oad name	Link	Text	DRBFC data, legal documents		5 years
ink code	Link	X##-##	DRBFC data, legal documents	Road code-two digit link number	5 years
ink name	Link	Text	DRBFC data, legal documents		5 years
tart name	Link	Text	DRBFC data, legal documents		5 years
tart chainage	Link	#+### m	ROMDAS odometer survey		5 years / After project
tart GPS coordinate	Link	X,Y,Z	ROMDAS GPS survey		5 years / After project
nd name	Link	Text	DRBFC data, legal documents		5 years
nd chainage	Link	#+### m	ROMDAS odometer survey		5 years / After project
nd GPS coordinate	Link	X,Y,Z	ROMDAS GPS survey		5 years / After project
PS track	Link	X,Y,Z	ROMDAS GPS survey		5 years / After project
ink length	Link	km (m)	ROMDAS odometer survey		5 years / After project
errain class	Segment	Category	ROMDAS video data post-processing	Flat, Rolling, Mountainous	5 years
ainfall class	Segment	Category	Rainfall maps	<1000mm, 1000-2000mm, >2000mm	5 years
echnical class	Segment	Category	DRBFC data	R1,R2,R3,R4,R5,RR1,RR2, underclass	1-2 years / After project
urface type	Segment	Category	ROMDAS video data post-processing, contract data	AC,PM,ST,CC,SM,GR,ER	1-2 years / After project
avement Class	Segment	Category	ROMDAS video data post-processing, contract data	Sealed, Unsealed	1-2 years / After project
arrageway width	Segment	m	ROMDAS video data post-processing, contract data		1-2 years / After project
lumber of lanes	Segment	#	ROMDAS video data post-processing, contract data		1-2 years / After project
ideo data	Link	Video/GPS	ROMDAS video survey	.xls/.mp4	1-2 years
oughness	100m	IRI	ROMDAS profilometer / ROMDAS bump integrator	For network analysis	1-2 years
oughness survey date	100m	Date	ROMDAS profilometer / ROMDAS bump integrator		1-2 years
urface distress class	Segment	SDI	ROMDAS video data post-processing	For network analysis	1-2 years
urface survey date	Segment	Date	ROMDAS video data post-processing		1-2 years
ast treatment	Segment	Year	DRBFC data		1-2 years / After project
ast treatment	Segment	Contract	DRBFC data	Link to contract database	1-2 years / After project
ive Year Plan	Segment	Year	Five Year Plan	Year of planned works	5 years
RIDGES	TYPE	UNIT	SOURCE	REMARKS	FREQUENCY
ridge code	Point	X##-B##	Appoint	Based on road code+B+two-digit code	5 years / After project
ridge name	Point	Text	DRBFC data		5 years / After project
iver name	Point	Text	DRBFC data		5 years / After project
PS location	Point	X,Y,Z	Bridge survey / ROMDAS video post-processing	Start of the bridge	5 years / After project
hainage	Point	#+### m	Bridge survey / ROMDAS video post-processing	Start of the bridge	5 years / After project
ridge type	Point	Category	Bridge survey / ROMDAS video post-processing	Beam, Arch, Truss, Suspension, Cable, Other	5 years / After project
eck material	Point	Category	Bridge survey / ROMDAS video post-processing	Concrete, timber, steel	5 years / After project
ridge length	Point	m	Bridge survey / ROMDAS video post-processing		5 years / After project
ridge width	Point	m	Bridge survey / ROMDAS video post-processing		5 years / After project
ridge spans	Point	#	Bridge survey / ROMDAS video post-processing		5 years / After project
Ipstream protection	Point	Category	Bridge survey	None, Concrete, Stone masonry, Gabion	5 years / After project
ownstream protection	Point	Category	Bridge survey	None, Concrete, Stone masonry, Gabion	5 years / After project
onstruction year	Point	Year	DRBFC data		5 years / After project

Data collection

- Different ways to collect the same or similar data
 - Depends on the required accuracy
 - Depends on how we will use the data functions of the RAMS
- Example: potholes and cracking
 - Number and size of potholes or cracking
 - Degree of potholes or cracking (Low, Medium, High, Very High)
 - Manual survey in the field
 - Visual assessments from a vehicle
 - Measurements on the road itself costly
 - Post-processing of video data
 - Visual assessment of categories based on forward-looking camera
 - Low accuracy measurements based on forward-looking camera
 - Automated data collection
 - High accuracy measurements based on downward-looking camera


Combining data collection

- Different data types are often collected together
 - Using different equipment
 - During a single survey
 - This reduces data collection costs
- Not possible for all data
 - Some data can be collected in a drive-over survey
 - IRI data
 - Video
 - Road length
 - Some data requires stopping (and measuring)
 - Culvert data
 - Bridge abutment data
 - Falling Weight Deflectometer

CAREC Example of survey equipment

• Example from ROMDAS – this is only one of many possible suppliers

CAREC Survey equipment Mongolia

CAREC Example of Post-Processing

Data collection timing

- Data generally collected after winter or rainy season
 - Most damage occurs during that season
 - Data remains up-to-date until next winter/rainy season
- Post-processing can be carried out throughout the year
- Data to be used for planning and budgeting
 - Needs to be aligned with budget submission / fiscal year
 - Take account of time required for data processing and analysis
- Generally a peak period for data collection
 - Few months each year
 - Depends on network size and portion to be surveyed each year
 - Depends on frequency of surveys

CAREC Example: Pakistan

ID	Task Name	2nd Quarter	3rd Quarter	4th Quarter	1st Quarter	2nd Quarter	3rd Quar
				Oct Nov Dec			
1	Data Collection		September 15	Novemb			
2	Strategy and Programme Analysis		Nove	mber 16 De	ecember 16		
3	Regional Stakeholder Consultations			December 17	January 16		
4	Detailed Project Level Appraisal			January 17	Ma	rch 3	
5	Scrutiny by RMA Technical Scrutiny Party				March 4	larch 10	
6	Review by the Steering Committee				March 11	March 17	
7	Approval by Chairman NHA and NHA Executive Board				March 18	April 2	
8	Convey of Approval to Regions					🔶 April 3	
9	Updation of Maintenance Contractors Enlistment				April 4	May 2	
10	Preparation of Detailed Tender Packages by Regional Offices				March 19	April 15	
11	Bids Invitation, Evaluation & Contract Awards				April	16	June 16
12	Commencement and Completion of RMA Works	July1					June 30

Data collection frequency

- Inventory data
 - Only changes if road is damaged or improvements are made
 - Recording damages/improvements in RAMS will keep it up-to-date
 - Still need to update inventory data every 5-10 years
 - Entire network or only portion
 - Can be simple check of existing data correct/add only where incorrect/missing
- Condition data
 - Changes rapidly old data not useful
 - New data needs to be collected
 - Generally every 1-2 years for planning
 - May be longer period for low level roads (monitoring)
 - Less frequently for structures
- Traffic data
 - Can be adjusted based on general traffic growth
 - Still need to update traffic data every 5 years

Data collection frequency

- Lower frequency = Lower accuracy/reliability (data is outdated)
- Higher frequency = Higher cost
- Again the question is what accuracy is required
 - Programme analysis Higher accuracy required to determine treatment for each road link
 - Strategy analysis Lower accuracy required to determine mix of treatments for entire network
- Part of the network each year
 - Frequency of 5 years 20% of the network each year to avoid big peaks in data collection
 - Alternatively combine all data collection to include it in a single contract

In-house or contracted out

- Condition data collection has peak each year
- Inventory/traffic data collection has peak every few years
- Data collection by in-house staff has benefits
 - Develop specific skills particular to your system
 - Avoid procurement delays and other issues
- It also has drawbacks
 - What will in-house staff do between peaks? Can they be involved in other aspects of the RAMS and planning?
 - How to ensure budget for operation (fuel, per diems) and equipment repairs?
- Can certain data collection tasks be outsourced?
 - Does the capacity/equipment exist in-country?
 - How can quality be ensured?

Example: Georgia

- Data collection is done in-house
 - ROMDAS survey vehicle
 - GPS, odometer, 3 video cameras, laser profilometer
 - 2 mobile traffic counting stations
 - Operated by RAMS unit 3 staff
- Data needs expected to increase
 - Road inventory (passportization)
 - Bridge Management System
 - iRAP assessments using video data

- Some data collection likely to be outsourced
 - Maintenance contractors already required to collect traffic data
 - Just data collection or also post-processing

Example: Timor-Leste

- No data collection carried out yet
 - ROMDAS survey vehicle used for contract performance monitoring
 - GPS, odometer, laser profilometer, bump integrator, (1 video camera, DataView software)
- Currently a RAMS is being developed
 - Requires data to operate
- WB to support data collection for national and municipal roads
 - Using the existing ROMDAS vehicle
 - Basic inventory and condition data
 - Post-processing of video data using DataView software (e.g. bridges, surface distress)
 - Providing fixed/mobile traffic counters to roads department for traffic counts
 - On-the-job training to government staff
 - Government staff to replicate in future years (RAMS unit, Maintenance Department)

Example: Pakistan

- Data collection initially done in-house by NHA staff
 - Using ROMDAS survey vehicle and Dynatest FWD trailer
 - Later additional equipment procured
- Subsequently data collection was outsourced
 - To private sector consultants
 - Survey equipment was provided by NHA
 - Operation and maintenance to be funded by consultant
- Now contracted out for 3-year periods
 - Updating of inventory, condition and traffic data
 - Entry into road database
 - Preparation of draft annual maintenance plans finalization and approval still inhouse by NHA

Example: Kyrgyz Republic

- Only recently started RAMS development
- Data collection carried out by Production Innovation Centre (PIC)
 - Self-supporting state institute under MOTC
 - Sign a contract with Road Maintenance Department under MOTC to survey roads
 - Entry of data into database
 - Initial analysis of data
- Final planning done by Road Maintenance Department
- Issues with regular funding of PIC
 - Lose staff and unable to invest in equipment

Data collection costs

- Equipment and software
 - Smartphone app: \$500 (RoadLab) to \$5,000 (RoadRoid)
 - ROMDAS equipment: \$50,000-\$75,000 (excluding vehicle)
 - Fully automated survey vehicle: >\$200,000 (including vehicle)
 - Automated laser crack measuring system: \$500,000 (excluding vehicle)
 - Light detection and ranging (LiDAR) system: \$1,000,000 (excluding vehicle)
- Operation
 - Staff (driver + operator) + training
 - Per diems
 - Fuel (only one lane of road, or all lanes)
- Post-processing of data
 - Processing of video and other data
 - Data validation
- Maintenance
 - Vehicle servicing and spare parts
 - Equipment servicing and repairs/replacement (service licence)

Data collection

- What data to collect
- How to use that data
- How to collect it
- How often to collect it
- Who will collect it
- What resources are needed
- How to minimize the data collection needs/costs