

Public Sector Financial Management

Dr. Eduardo Araral Assistant Dean and Assistant Professor Lee Kuan Yew School of Public Policy

OUTLINE

- Part 1: Scope and principles of public finance
- Part 2: Managing revenues, expenditure and debt
- Part 3: Performance based budgeting
- Part 4: Budget Execution / internal controls
- Part 5: Cost benefit analyses

Part 5: Benefit Cost Analyses

Approaches to investment decision making

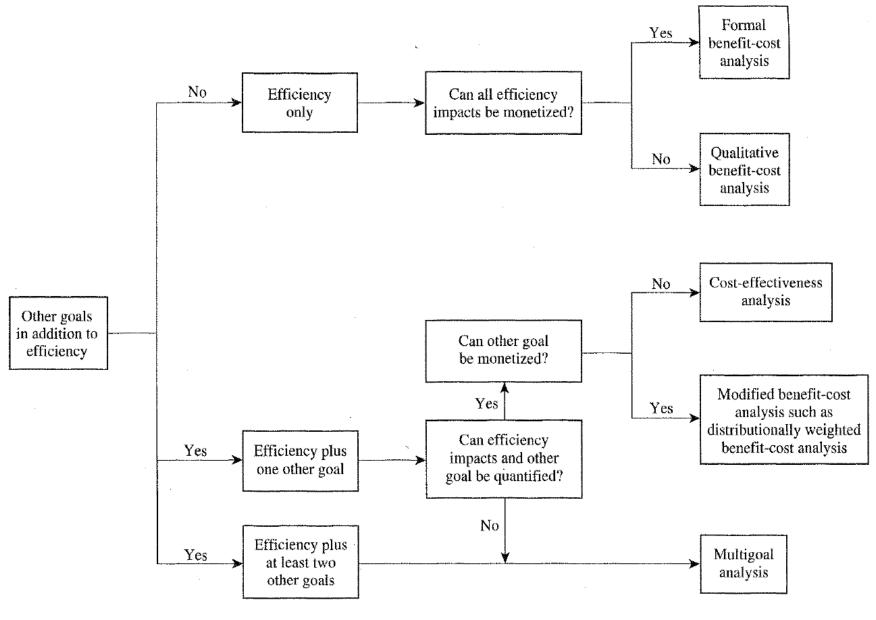


Figure 10.4 Choosing a Solution Method

Steps to Benefit – Cost Analysis

- Identify and value benefits
- Identify and value costs
- Convert Financial Costs to Economic Costs
- State general assumptions/ discount rate
- Calculate Economic Rate of Return
- Calculate Net Present Value
- Perform sensitivity analyses
- Decide whether or not to invest

Step 1: Identify and value benefits

Subproject	Quantified Benefits
Water Supply	Time savings in fetching water
	Cost savings on non-incremental water consumption
	Value of increased water consumption in the with project situation
Roads	Cost savings to transport agriculture produce to market
	Cost savings to transport agriculture inputs to production site
	Reduction in post-harvest losses due to shorter marketing periods, better access to
	technology, and extension services
School Buildings	Higher enrollment rates and lower dropout rates increase the number of children with
	additional years of schooling, who will be able to realize higher future incomes as a result
	of higher education.
Barangay Health Facilities	Better health of the local population and work force through decreased mortality and
	morbidity, leading to increased productivity of labor in their economic activities (quantified
	by willingness to pay)
Day Care Centers	Benefits from longer schooling by reducing drop-out rates in elementary school because of
	better readiness for school
	Direct gains in future earnings because of enhanced child ability
	Women have free time that can be used for productive activities

Step 2: Identify and value costs

- Capital / investment costs
- Operation and maintenance costs
- Environmental costs

Step 3: Convert Financial Costs to Economic Costs

- 4. Price Adjustments. Financial prices were adjusted accordingly to reflect their economic values and account for distortions. The following parameters were used for price adjustments.
 - 4.1 Shadow foreign exchange rate (SER). The SER, currently pegged by NEDA at 1.20, was used to correct for distortions and was applied to all direct and indirect foreign exchange costs of a project. It was also used for those benefits which may be expressed in foreign exchange, particularly in the case of exports and/or import substitutes such as paddy.
 - 4.2 Shadow Wage Rate. The shadow wage rate (SWR), currently pegged by NEDA at 0.6 of legislated wage for labor, was used to reflect the true economic value of unskilled labor employed in the project. In the watershed management and development component, the labor component accounts for 60% of total investment cost for agroforestry projects based on DENR guidelines (2001).
 - 4.3 Shadow Discount Rate. The social discount rate (SDR), currently pegged by NEDA at 15%, was used to discount the stream of economic costs and benefits to their net present values. The SDR was also used, as required by NEDA, as the hurdle rate for the Project's EIRR.
 - 4.4 Project Costs. Project costs were distinguished in terms of foreign costs, local costs and taxes. Foreign cost components were valued in constant 2004 prices.

Example: Convert Financial Costs to Economic Costs

Subproject Type	Financial Cost/ SP (PHP) ^{1/}	Economic Cost per SP (PHP) ^{1/}	Economic / Financial Cost
Level II Water System – Pump	982,005	1,070,385	1.09
Level II Water System – Gravity	847,162	923,406	1.09
Road Improvement	1,505,347	1,776,310	1.18
Road Construction	1,881,406	2,163,617	1.15
School Building	691,745	767,837	1.11
Health Station	372,477	420,899	1.13
Day Care Center	301,540	334,710	1.11

Step 4: State General Assumptions

- When will full benefits be realized?
- When will benefits will occur?
- Are O&M costs constant in project life?
- What is the discount rate (opportunity cost of capital) → Ministry of Economic Planning

Step 5: State decision rule:

- Accept investment project if:
 - Economic Internal rate of return (EIRR) of project is greater than the discount rate
 - Net present value (NPV) is greater than 0

Example: Constructing a school building

Table 12. Economic Analysis for Elementary School Buildings NPV = \$42,729; IRR = 15.91%

<u>Assumptions</u>	Unit	Without Project	With Project	With - Without
Economic cost of construction	PHP	0.00	767,837.45	767,837.45
Social preparation / Capability Building	PHP	0.00	119,098.82	119,098.82
Total operating cost	PHP	0.00	78,323.55	78,323.55
M&E cost	PHP	0.00	2,048.20	2,048.20
Total Investment Cost	PHP	0.00	967,308.02	967,308.02
Beneficiary families (1 barangay)	families	271.00	271.00	0.00
Family size	persons	5.00	5.00	0.00
Barangay population	persons	1355.00	1355.00	0.00
Proportion of children 6-12 years	%	17.4%	17.4%	0.00
Number of children 6-12 years	children	236	236	0.00
Enrollment rate of children 6-12 years	%	85.00%	96.00%	10.00%
Drop-out rate children 6-12 years	%	20.00%	10.00%	-10.00%
No. children 6-12 yrs complete school yr	children	161	202	41
Inc NPV of earning / 1 extra yr school	PHP	4,334.97	4,334.97	0.00
Gross annual benefit	PHP	697929	875663	177734
O&M Cost - teacher	PHP/year	260,000.00	260,000.00	0.00
O&M Cost - repairs	PHP/year	2,500.00	7,500.00	5,000.00
O&M Cost - materials & supplies	PHP/year	26,000.00	26,000.00	0.00
O&M Cost - water & electricity	PHP/year	12,000.00	12,000.00	0.00
Annual net benefits	PHP/year	397,429	570,163	172,734
Project life	years	0.00	15.00	15.00
Discount rate				15.00%

Example: Rural Road Project

Table 10. Economic Analysis of Road Construction NPV=P607,402; IRR = 21.46%

<u>Assumptions</u>	Unit	Without Project	With Project	With - Without
Economic cost of construction	Subproject	0.00	2,163,617.11	2,163,617.11
Social Preparation	PHP	0.00	119,098.82	119,098.82
Total Operating Cost	PHP	0.00	78,323.55	78,323.55
PMO Cost	PHP	0.00	2,048.20	2,048.20
Total Investment Cost	PHP	0.00	2,363,088	2,363,088
Number of barangay households	Households	224.00	224.00	0.00
% households benefiting from road	%	40%	50%	0.10
Number of benefiting farmers	farmers	89.60	112.00	22.40
Avg. area cultivated with paddy/ farmer	hectares	1.30	1.30	0.00
Yield, Paddy (per harvest)	kg/ha	2,940.00	2,940.00	0.00
Cropping Intensity Index	harvests/year	1.36	1.36	0.00
Paddy production per year/ farmer	kg/year	5,197.92	5,197.92	0.00
Reduction in Post harvest losses	%	13.00	10.50	-2.50
Reduction in Post harvest losses	kg/year	675.73	545.78	-129.95
Paddy prod /year/ farmer + post harvest savings	kg/year	4,522.19	4,652.14	129.95
Price	PHP/kg	8.30	8.30	0.00
Annual gross benefit per farmer (total production)	PHP/year	43,142.74	38,612.75	-4,529.99
Subsistence consumption per year and farmer	kg/year	1,050.00	1,050.00	0.00
Annual quantity marketed per farmer	kg/year	4,147.92	4,147.92	0.00
Transport cost for paddy	PHP/kg	0.72	0.18	-0.54
Annual transport cost for paddy per farmer	PHP/year	2,986.50	746.63	-2,239.88
Fertilizer application per planting season	kg/ha	168.00	168.00	0.00
Transport cost for fertilizer	PHP/kg	0.72	0.61	-0.11
Annual transport cost for fertilizer per farmer	PHP/year	213.86	181.18	-32.67
Annual transport cost for paddy and fertilizer per farmer	PHP/year	3,200.36	927.81	-2,272.55
Annual O&M cost	PHP/year		50,000	50,000
Annual net benefit for all farmers	PHP/year	3,578,837	4,170,713	591,876
Project Life	years	0.00	10.00	10.00
Capital Cost / Annual Net Benefit				3.99
Discount Rate				15.00%

Example: water supply project

Table 8. Economic Analysis for Water Supply System II - Pump Driven NPV = P2,451,598; IRR = 57.78%

<u>Assumptions</u>	Unit	Without Project	With Project	With - Without
Economic cost of construction	PHP	0.00	1,070,385.27	1,070,385.27
Social preparation / Cap. Bldg	PHP	0.00	119,098.82	119,098.82
Total operating cost	PHP	0.00	78,323.55	78,323.55
M&E cost	PHP	0.00	2,048.20	2,048.20
Total Investment Cost	PHP	0.00	1,269,855.83	1,269,855.83
Gross Annual Benefit	PHP	0.00	776,507.34	776,507.34
Annual O&M cost	PHP/year	0.00	35,000.00	35,000.00
Annual Net Benefits	PHP/year	0.00	741,507.34	741,507.34
Project Life	years	0.00	10.00	10.00
Capital Cost / Annual Net Benefit				1.71
Discount Rate				15.00%

Sensitivity Analyses: What happens when costs and benefits increase or decrease?

Table 19. Sensitivity Analysis

	SCENARIO 1: 20% increase in cost			SCENARIO 2: 20% decrease in benefits			
Subproject Type	Expected	Switching	Sensitivity	Expected	Switching	Sensitivity	
	NPV	Value	Indicator	NPV	Value	Indicator	
Level II Water Pump	2,197,627	193%	1	1,707,307	-66%	-2	
Level II Water Gravity	2,343,271	229%	0	1,829,702	-69%	-17	
Road Improvement	-225,237	9%	12	-259,221	-8%	-2	
Road Construction	484,363	40%	2	292,967	-29%	-7	
School Building	-150,732	4%	23	-159,278	-4%	-1	
Health Center	109,857	38%	3	63,071	-27%	-7	
Day Care Center	-5,716	19%	5	-25,940	-16%	-4	
Overall Project	-136,328,532	18%	6	-330212523.3	-15%	-4	

If sensitivity indicator is greater than +/-1, then project is sensitive to the parameter

SUMMARY

Part 1: Scope and principles of public finance

Part 2: Managing revenues, expenditure and debt

Part 3: Performance based budgeting

Part 4: Budget Execution / internal controls

Part 5: Cost benefit analyses

Reflection Question

What are the 5 main lessons you take away from this module???