Economic Effects of Transport Infrastructure and The Way to Increase Rate of Return

Naoyuki Yoshino

Dean, Asian Development Bank Institute (ADBI)

Professor Emeritus Keio University nyoshino@adbi.org

Infrastructure Finance: Use of long term domestic savings

Long term and Patient investors are needed

- 1. Bank deposits Bank Ioans (2-5 years)
- 2. Life insurance (20 years, 30 years)
- 3. Pension funds (20, 30, 40 years)

Long term financing

4. Asset Management of long term instruments

5. Financial education has to be developed

Regional Disparities of Economic Effects large differences in Spillover effects 1990 2010

Spillover effects \rightarrow Return to investors

1956-60 1961-65 1966-70 1971-75 1976-80 1981-85

Direct Effect (I	0.	.696	0.7	'37	0.63	38	0.508	0.359	0.275	
Indirect Effect	0.453		0.5	53	0.48	88	0.418	0.304	0.226	
Indirect Effect	1.071		0.907		0.74	10	0.580	0.407	0.317	
20%Returned		0.3048		0.2	292	0.245	56	0.1996	0.1422	0.1086
%Increment	4	3.8	39	9.6	38.	.5	39.3	39.6	39.5	
	1986	5 -90	199	1-95	19	96-00	20	001-05	2006-10	
				0.181		0.135		0.114	0.108	
		0.195		0.162		0.122		0.1	0.1	
		0.193		0.155		0.105		0.09	0.085	
0		.0776		0.0634		0.0454		0.038	0.037	
		36.1	6.1			33.6		33.3	34.3	ADBInstitute

Fees + Additional return from tax revenues \rightarrow Increase rate of return on investment **Toll fees** Ticket revenue \rightarrow Investors Employmen **Spillover** effect Private investment Spillover effect \rightarrow Increase in Tax revenues

Cross-border Infrastructure Investment Role of Multilateral Institution Large Country A Country B Spillover effect, Promote SMEs **Spillover effect** \rightarrow Increase in Tax revenues ADBInstitute

Uzbekistan Railway

Divide regions affected and not affected by railway connection to "Treated group" and "Control group"

Difference-in-difference: regression

• incorporating time varying covariates Control group $E[\Delta Y_{0it}|i, t, X_{it}] = \alpha + \gamma_i + \varphi_t + X'_{it}\beta$ Treated group $E[\Delta Y_{1it}|i, t, X_{it}] = E[Y_{0it}|i, t, X_{it}] + \delta$

•
$$\Delta Y_{it} = \alpha_i + \varphi_t + X'_{it}\beta + \delta (D_{rail} \times D_{post})_{it} + \epsilon_{it}$$

 ΔY_{it} - GDP growth rate

 α_i - sum of autonomous (α) and region specific(γ_i) rate of growth

 φ_t - year specific growth effect

 X_{it} -time varying covariates

 $(D_{rail} \times D_{post})_{it}$ -dummy variable indicating that observation belong to treated group after treatment period

December 14-15, 2015

 δ - difference in difference coefficient

 ϵ_{it} - error term

ADBInstitute

GDP

GDP	Term	Connectivity effect	Regional effect	Spillover effect
Launching	Short	2.83***[4.48]	0.70[0.45]	1.33[1.14]
Effects	Mid	2.5***[6.88]	0.36[0.29]	1.27[1.46]
	Long	2.06***[3.04]	-0.42[-0.29]	2.29**[2.94]
Anticipated	Short	0.19[0.33]	0.85[1.75]	-0.18[-0.20]
ar	Mid	0.31[0.51]	0.64[1.30]	-0.02[-0.03]
1 ye	Long	0.07[0.13]	-0.006[-0.01]	0.50[0.67]
Postponed Effect	S	1.76*[1.95]	-1.49[-0.72]	2.58*[2.03]
Anticipated	Short	-1.54[-1.66]	1.42[0.78]	-1.32[-0.92]
ars	Mid	0.32[0.44]	0.84[1.42]	0.13[0.13]
2 ye	Long	0.11[0.15]	0.10[0.16]	0.87[1.19]
Postponed Effect	S	-0.14[-0.20]	-1.71[-1.35]	1.05[1.44]

Note: t-values are in parenthesis. t-value measures how many standard errors the coefficient is away from zero.

legend: * p<.1; ** p<.05; *** p<.01

ADBInstitute

Additional tax revenue, Regional GDP growth and Railway Company Net Income, LCU (bln.)

Period	Coefficients	T(20)*∆Y (Tax revenue)	ΔY Affected (Direct + Spillover effects)	Company net income (Revenue - Costs)
Short term (2009-2010)	2.83*** [4.48]	16.0	79.9	315.5
Mid-term (2009-2011)	2.48*** [6.88]	16.3	81.5	411.7
Long-term (2009-2012)	2.06*** [3.04]	14.7	73.5	509.0

Source: Authors' calculations

Japanese Bullet Train

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 1st PHASE OF OPERATION period

{2004-2010}, mln. JPY (adjusted for CPI, base 1982)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3

						GR	OUPS
Variable Treatment2	Regression 1 -4772.54 [-0.2]	Regression 2	Regression 3	Regression 4	Regression 5	Group2 Kagoshima Kumamoto	Group5 Kagoshima Kumamoto
Number of tax payers Treatment3	5.8952514* [1.95]	5.8957045* [1.95] -15947.8 [-0.87]	5.896112* [1.95]	5.8953585* [1.95]	5.8629645* [1.91]	Group3 Kagoshima Kumamoto	Fukuoka Oita Miyazaki
Treatment5			-13250.4 [-1.06]			TURUORA	
Treatment7				-6883.09 [-0.7]		Group7	GroupCon Kagoshima
TreatmentCon					-28030.8 [-0.65]	Kagoshima	Kumamoto
Constant	-665679 [-1.35]	-665418 [-1.35]	-665323 [-1.35]	-665358 [-1.35]	-658553 [-1.32]	Kumamoto Fukuoka Oita	⊢ukuoka Osaka Hyogo
Ν	799	799	799	799	799	Miyazaki	Okayama
R2	0.269215	0.269281	0.269291	0.269241	0.269779	Saga	Hiroshima
F	1.934589	2.106448	2.074548	2.100607	8.497174	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

COMPOSITION OF

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 2nd PHASE OF OPERATION period

{2011-2013}, mln. JPY (adjusted for CPI, base 1982)

1	1	1	1	1	1	1	1	1	1	1	1 19	1	1	1	1	1	2	2	2	22	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9 94	9	9	9	9	9	0	0	0	0 0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	0	0	0	0 0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	5	6	7	8	9	0	1	2	34	5	6	7	8	9	0	1	2	3

Variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
Treatment2	72330.012**	-	-	-	-	Kagoshima	Kagoshima
	[2.2]					Kumamoto	Kumamoto
Number of tax							Fukuoka
payers	5.5277056***	5.5585431***	5.558603***	5.5706545***	5.9640287***	Group3	Oita
	[3.13]	[3.14]	[3.14]	[3.14]	[3.07]	Kagoshima	Miyazaki
Treatment3		104664.34*				Kumamoto	iniyazana
		[2]				Fukuoka	
Treatment5			82729.673**			TURUORA	
			[2.1]				
Treatment7				80998.365**			GroupCon
				[2.34]	(70000	Group7	Kagoshima
TreatmentCon					179632	Kagoshima	Kumamoto
Constant	560122 00**	570717 00**	571015 07**	576967 56**	[1.00] 6/0100 07**	Kumamoto	Fukuoka
Constant	-300133.90	-0/0/4/.20	-5/4245.07	00.100070-	-042130.07	Fukuoka	Osaka
	[-2.07]	[-2.00]	[-2.00]	[-2.09]	[-2.1]	Oita	Hyogo
N	611	611	611	611	611	Miyazaki	Okayama
R2	0.350653	0.352058	0.352144	0.352874	0.364088	Saga	Hiroshima
F	5.062509	5.486197	5.351791	5.431088	16.55518	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

COMPOSITION OF GROUPS

Tibet Railway

Qinghai-Tibet Railway Impact: Estimation

Source	SS	df	MS	Number of obs =	72
				F(6, 65) =	7.73
Model	8.28173613	6	1.38028935	Prob > F =	0.0000
Residual	11.6075298	65	.178577382	R-squared =	0.4164
				Adj R-squared =	0.3625
Total	19.8892659	71	.280130506	Root MSE =	. 42258

difference1	Coef.	Std. Err.	t	P≻ t	[95% Conf.	Interval]
govspending1	.0118414	.0028554	4.15	0.000	.0061389	.017544
population1	.0034233	. <mark>0013616</mark>	2.51	0.014	.000704	.0061426
population0	0102002	.0037957	-2.69	0.009	0177808	0026196
govspending0	0206841	.0055783	-3.71	0.000	0318248	0095435
Dummy	.0924005	.2097625	0.44	0.661	3265242	.5113252
Dummy2	.061252	.1937049	0.32	0.753	3256034	.4481074
_cons	. 4984291	.2045091	2.44	0.018	.0899961	. 906862

Nakahigashi, M and Yoshino, N. (2016) "Changes in Economic Effect of Infrastructure and Financing Method", <u>Public Policy Review</u>, Vol.12, No.1.

Yoshino, Naoyuki (2010) "Financing Transport Infrastructure Investment", OECD (ed.), <u>Southeast Asian Economic Outlook 2010</u>, OECD Publishing.

Yoshino, Naoyuki (2012) "Global Imbalances and the Development of Capital Flows among Asian Countries", OECD Journal: Financial Market <u>Trends</u>, Vol. 2012/1

Yoshino, Naoyuki and Masaki Nakahigashi (2004) "The Role of Infrastructure in Economic Development", <u>ICFAI Journal of Managerial</u> <u>Economics</u>, 2, pp. 7-24

Yoshino, Naoyuki and Victor Pontines (2015) "The Highway Effect on Public Finance: Case of the STAR Highway in the Philippines", <u>Asian</u> <u>Development Bank Institute (ADBI) Working Paper No.549</u>.

Yoshino, Naoyuki, Victor Pontines and Umid Abidhadjaev (2015) "Impact Evaluation of Infrastructure Provision on Public Finance and Economic Performance: Empirical Evidence from Philippines and Uzbekistan", <u>Asian</u> <u>Development Bank Institute (ADBI), Working Paper, No.548.</u>

