Training Module on Renewable Energy Technology, Policy & Integration

> Caspian Energy Policy Dialogue and Training Astana, Kazakhstan 3 – 5 July 2012

Hugo Chandler, M.Sc. For the International Energy Agency

Session 2: Policy

CD/IEA 201

Session overview

- Future Role of RE IEA Scenarios
- Why RE?
- Why Are Policies Needed?
- What Policy Options are available?
- Evaluation of Policy Options
- Policy Best Practice

IEA Scenarios

iea

WEO Scenarios

Current Policy Scenario

- Least optimistic
- Formally adopted and implemented policies
- New Policy Scenario
 - Recent new policy commitments implemented
 - E.g. pledges to reduce subsidies to fossil fuels
- "450 PPM" Scenario
 - Adequate steps are taken to limit CO₂ concentrations in the atmosphere to 450ppm
 - Resulting in global mean temperature rise not greater than 2^o C

How do we get to 450 ppm?

Energy-related CO2 emission savings by technology in the 450 Scenario relative to the Current Policies Scenario

Small group of countries have a large role

 China and US responsible for half of all emissions reduction over the period

Renewables grow in all scenarios

Ambition not limited to the OECD

Will developing economies take the renewables route (without going via fossil fuels first)?

Renewable energy is a local resource

Over 50% of the global population lives in cities –

- And consume 2/3 of total world primary energy
- Urban population is increasing by 1 million per/week

CO2 from renewables is tiny!

Lifecycle emissions

CO₂ Power Sector Emission Savings, 2008

In 2008, renewables saved 1.7 Gt of power sector CO2 emissions

Technology	Global	Key regions
Biofuels	> 1 500 000	Brazil 730 000: sugarcane, ethanol production
Wind power	~ 630 000	China 150 000, Germany 100 000, USA 85 000, Spain 40 000, Italy 28 000, Denmark 24 000, Brazil 14 000, India 10 000
Solar hot water	~ 300 000	China 250 000, Spain 7 000
Solar PV	~ 350 000	China 120 000, Germany 120 000, Japan 26 000, USA 17 000, Spain 14 000
Biomass power	-	Germany 120 000, USA 66 000, Spain 5 000
Hydropower	-	Europe 20 000, United States 8 000, Spain 7 000
Geothermal	-	Germany 13 000, USA 9 000
Biogas	-	Germany 20 000
Solar thermal power	~ 15 000	Spain 1 000, USA 1 000
Total estimated	> 3 500 000	

Strategic Drivers - Outlook

Policy Trends

Gaining momentum

- Many more countries are implementing policies in place, particularly outside OECD, than in 2005.
- 45 of the IEA's 56 focus countries now have renewable electricity targets, including 20 non-OECD countries.

 53 of the focus countries have electricity support policies in place, compared to 35 in 2005.

Why is policy so important?

Is it just because renewables are too expensive?

There are a lot of hurdles to cross

- Economic: how to compete with fossil alternatives?
- Market: barriers to entry, distorting price mechanisms, PPA availability
- Financial: Absence of investment?
- Technical: Is the technology mature?
- Infrastructure: Is the grid appropriate?
- Administrative/ Social : Are planning / permitting procedures streamlined?
- Environmental: Are regulations appropriate?

Cost of energy

How to match / undercut fossil energy prices?

Though cost reductions continue, some RE technologies are still relatively expensive

And generation costs are influenced by all the below barriers also E.g. expensive debt financing, undue grid expansion burden

Market and finance

Market

- Historical market characteristics (unrelated to RE) that hinder market entry.
- Subsidised electricity production from fossil sources (Algeria, Venezuela, UAE, KSA, central Asia)
- Market power of encumbent (conventional) utilities
- Absence of a carbon price (to reflect real costs of emissions)

Finance

- Inadequate finance, due to low returns, insecure investment context, suitable financial products
- RE will go where the investment climate is most encouraging:
 - ➢ in 2009 China alone saw 25% of global investment in RE

Development banks: key catalyst

- ...For asset finance in emerging markets
- …For capital intensive renewable energy technologies
- ...To attract private investment (reduced perceived risk)
- Global investment *4 since 2007 (USD 17 bn in 2011)

KEY CHALLENGE: find quality, investment ready projects!

Development bank lending

Multilateral collaboration among ADB, EBRD, other developing banks through Climate Investment Funds (CIF)

Clean technology fund (within CIF)

- Kazakhstan: Renewable Energy Funds III & IV (USD 75m)
- EBRD (committed):
 - Kazakhstan: CAEPCO district heating projects (USD 31m)

ADB:

 Uzbekistan: USD 436 million for transmission and supply (inc. 150 million for advanced electricity metering)

Technical and infrastructure

Technical

- Is the technology mature? Is it available? Is it manufactured locally?
- Wind turbines are mature technology, but market tightness may inflate prices to the developer.
- China has halved the cost of producing wind turbines since boosting local manufacture

Infrastructure

- Is local infrastructure adequate to build plant and distribute the output?
- The UK is planning the construction of dedicated port facilities to install offshore wind power
- 25% of Chinese installed wind capacity not connected to the grid

Administrative, socio-environmental

Administrative

- Is there enough political will? Are administrative procedures and legal frameworks efficient?
- In 2011, Greece imposed a maximum length of 4 months to finalize a concession granting process

Social / Environmental

- What are the local impacts of RE?
- Community ownership in Europe
- Acceptance of the need for new grid infrastructure
- Perceived impacts of wind power on bird populations

Policy Options

So what is the best way to deploy more renewables?

Good policy keeps an eye on the exit...

- Renewable energy deployment needs state support
 - Relying on the private sector alone will severely delay action
 - $\circ~$ And may even be more costly in long term
 - Support must evolve over time until it can be phased out altogether – when the technology is competitive.
 - The essential underlying goal of any good support policy

No single policy package will suit all needs

- Policy must be tailored to suit the circumstances
- Barriers to RE deployment are complex and country-specific

Financial incentives

Name	Advantages	Disadvantages	
Soft Ioans / one- off subsidy E.g. PROSOL in Tunisia	Strong incentive for investment in early stage project development; cost can easily be capped	No longer term incentive to produce energy cheaply and efficiently; risk of overstretch, with insufficient resources for follow-up / O&M at risk from budget	
Government Purchase	vernment rchase Government purchase of electricity generated: long-term security for investments; stable generation targets		

Tax incentives

Name	Advantages	Potential problems	
Production-related tax credit E.g. Wind PTC in the USA	Liberates capital that can be re-injected in RE research, installation; good investor confidence; simple to implement	May be subject to budget cuts; no volume control; no cost control	
Consumption- related tax E.g. CO2 tax Sweden	Major economic driver in switching households and industries' consumption patterns on the long run. Allows for savings on electricity bill.	Only supports consumers that already have access to electricity from the grid	

Contractual incentives

Name	Advantages	Potential problems
Power Purchase Agreements (PPA)	Appropriate tool to attract capital in the inception phase and safeguard against operation and maintenance costs	The utility has to secure funding to pay the tariff over a long term period (usually 20 years).
Third Party Access (TPA)with privilege in Dispatching	Third party and grid priority access for renewable electricity are primordial and much needed evolutions of electricity markets in supporting RE deployment	Need for long lasting agreement between the state and the utility compelled to secure priority access to third party producers.

Quantity based incentives

Name	Advantages	Shortcomings	
Quota E.g. renewable portfolio standards in USA states	Stable systems that can attract large, long-term investment; deployment control	Means and effectiveness in achieving quotas may vary greatly among neighbours	
Green Certificates	Efficient policy tool to reach long-term generation targets in the EU and the US; cost capped by buy-out fee	Exposed to certificates market risk. Complex, especially for small producers	
Competitive tenders	Rapid, flexible, good volume control, good cost control	Low investor security during bidding phase; risk of aggressive bidding, gaming; less mature tech will suffer without banding	

Price based incentives

Description	Advantages	Shortcomings	
Feed-in Tariff	Strong incentive for long term investment of private capital and entrepreneurship; very specific control	Sustainability of financing needs to be carefully thought through; capacity cap may be required; frequent controls	
Feed-in Premium	Exposure to market with some protection. Premium declines with generation costs.	May give disproportionate support to least cost technologies at the expense of valuable but less mature technologies	

Research, development, demonstration

2011 values from UNEP/ BNEF Global Trends in Renewable Energy Investment 2012

Policy Priority changes over time

Deployment

Inception	Take-off	Consolidation	
 Strong will, strategy, targets Attractive support Set up regulatory framework R&D focus 	 Predictable, rapidly adaptation of incentives non- economic barriers Manage total cost of support 	 System integration & integration & evolution Exposure to competition Public acceptance 	

Offshore Wind, Advanced Biofuels, Enhanced Geothermal, Ocean Energy Solar PV, wind

 Carbon tax on fossil fuels used in heat production: Sweden (from 1991)

Source: Lund University

Barcelona solar ordinance

German building regulations: 30% RES-H in all new buildings

UK: Renewable Heat Incentive (mid 2011)

Technology	Tariff (€ct/kWh)	Tariff duration	Support calculation	
Small to large biomass	8.8 (< 200 kW _{th}) 3.0 (> 1000 kW _{th})	20 years	Metering (small & medium: restrictions to prevent excess heat)	
Heat pump (ground & water) Deep geothermal	5.0 (< 100 kW _{th}) 3.5 (> 100 kW _{th})	20 years	Metering	
Solar thermal	9.9 (< 200 kW _{th})	20 years	Metering	
Biomethane injection & biogas combustion	7.5 (biogas comb. < 200 kW _{th})	20 years	Metering	

Evaluating support policies

Two key questions evaluate policy

Cost control:

Does the country / region / taxpayer / ratepayer pay a reasonable amount per unit of renewable energy?

Volume control:

Does the country get satisfactory energy (TWh) for the remuneration it pays to generators?

How much progress?

IEA projections can be used to benchmark policy impact

Impact: how much more RE electricity?

Example: Onshore Wind

In the past, FITs had higher impact than TGCs, but TGCs are improving

Measuring Remuneration Adequacy - Methods

- How much is the developer rewarded?
- Is this adequate or is support too generous?

Cost effectiveness: how much is it costing?

Example: Onshore Wind

Majority of countries paying within rage, outliers more frequent for TGCs.

Impact vs. Cost-Effectiveness

Example: Onshore Wind

FIT/FIP systems tend to have a better cost/impact trade-off than TGCs.

Is the policy affordable?

Example: Solar PV

The few countries engaged in PV deployment pay a significant total cost.

Summary best-practice

- Predictable RE policy framework, integrated into overall energy strategy
- Portfolio of incentives based on technology and market maturity
- Dynamic, transitional policy approach based on monitoring of national and global market trends
- Tackle non-economic barriers
- Address system integration issues

Session 2: Policy

Questions and Answers

Characteristics of Support Systems

	FIT/FIP	TGC	Tender	Tax Incentive	Capital Grant
Deployment volume management	Difficult unless designed with capacity cap	Built-in but not technology specific	Good	None	Possible via cap on grant volumes
Price control	Very specific control possible; frequent reviews required	Price capped by buy-out fee and set by market; price floors can be introduced	Good	None	Possible by setting maximum grant levels
Investor security	High, some exposure to electricity market fluctuations for FIPs	Exposed to electricity and certificate market risks; can be mitigated by floors	High once concession is obtained, very low during bidding phase	High but susceptible to budget cuts	High but susceptible to budget cuts; especially attractive at high discount rates
Transaction costs/ complexity	Relatively simple if procedures streamlined and applicable to small developers	Complex, best for larger developers; can be mitigated by introducing public buyer for small projects	Relatively straightforwar d but best for larger projects; risk of too aggressive bidding and "gaming"	Relatively simple as part of overall tax management	Relatively simple