ROAD TRAFFIC ACCIDENT DATA COLLECTION AND ANALYSIS WORKSHOP COUNTRY: TAJIKISTAN

TA-6763 REG: Accelerating Innovation in Transport

Presented by
David Shelton, Senior Transport Specialist (Road Safety), Asian Development Bank Ravishankar Rajaraman, Road Crash Data Specialist, JP Research India Pvt. Ltd.

$$
13 \text { - } 14 \text { March } 2023
$$

PART 4:
 ROAD TRAFFIC ACCIDENT RECONSTRUCTION BASICS

How is road traffic accident investigation data used to determine vehicle speeds?

CREATIVE VIDEO OF FORENSIC CI

PHASES OF A CRASH

ON ARRIVAL AT A ROAD ACCIDENT SCENE...

- Which phase of the crash do you get to see?

FINAL RESTING POSITION
Assuming vehicles have not been moved after the accident.

PHASES OF A CRASH

MINIMUM REQUIREMENTS FOR ACCIDENT RECONSTRUCTION

- Vehicle photos
- Scene photos
- Scene measurements
- Driver's statement
- Injury report of the victims

ANALYSING A CAR VS PEDESTRIAN ACCIDENT

PEDESTRIAN COLLISION POINT OF IMPACT DETERMINATION

PEDESTRIAN COLLISION POINT OF IMPACT DETERMINATION

UNIT CONVERSION OF SPEED

- To convert speed from kilometres per hour (kmph) to metres per second $(\mathrm{m} / \mathrm{s})$, divide the speed value by 3.6.

$50 \mathrm{kmph} \square 50 / 3.6=13.9 \mathrm{~m} / \mathrm{s}$

- To convert speed from metres per second (m / s) back to kilometres per hour (kmph), multiply the speed value by 3.6.
$13.9 \mathrm{~m} / \mathrm{s} \longleftrightarrow 13.9 \times 3.6=50 \mathrm{kmph}$

Speed in km/h	
10	2.8
20	5.6
30	8.3
40	11.1
50	13.9
60	16.7
70	19.4
80	22.2
90	25.0
100	27.8
110	30.6
120	33.3

EQUATIONS OF MOTION

$$
\begin{array}{ll}
v=u+a t & \begin{array}{l}
\text { Where, } \\
v=\text { final velocity }, m / s \\
u=\text { initial velocity, } m / s \\
a=\text { acceleration, } m / s^{2}
\end{array} \\
s=u t+\frac{1}{2} a t^{2} & \begin{array}{l}
t=\text { time, } s \\
s=\text { distance, } m
\end{array} \\
v^{2}=u^{2}+2 a s &
\end{array}
$$

EQUATION TO BE USED

$$
v^{2}=u^{2}+(2 * a * s)
$$

$v=$ final velocity $(\mathrm{m} / \mathrm{s})$
[at FRP = 0]
$u=$ initial velocity (m / s)
[we need to estimate]
$s=$ distance (m)
$\mathrm{a}=$ acceleration/deceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
[length of brake mark]
$a=\mu \times 9.81$, where μ is the coefficient of friction between tyre and road surface

COEFFICIENT OF FRICTION

- Coefficient of Friction (μ) range for a passenger car based on surface condition

Surface condition
Friction coefficient

Dry	0.70 to 0.90
Wet	0.50 to 0.70
Very wet	0.40 to 0.50
Snow	0.10 to 0.50
Ice	0.05 to 0.25

UNDERSTANDING THE SCENE EVIDENCE

For this case assuming a dry surface with $\mu=0.8$

CALCULATION OF POST-IMPACT SPEED

- Formula used to calculate the speed of the vehicle from the available brake mark is as follows,

- $v^{2}=u^{2}+(2 \times a \times s)$
$u=$ Speed of the vehicle before braking $=$?
- $(0)^{2}=u^{2}+(2 \times-7.85 \times 5)$
$v=$ final velocity $=0 \mathrm{~m} / \mathrm{s}$
$a=$ Deceleration rate $=-7.85 \mathrm{~m} / \mathrm{s}^{2}$ average
value for full braking
$s=$ brake mark length $=5 \mathrm{~m}$;
put these values in formula
- $u=31.90 \mathrm{~km} / \mathrm{h}$

LAW OF CONSERVATION OF ENERGY

- Kinetic energy before impact
$=$ Kinetic energy after impact
$\quad+\quad$ Energy lost during deformation.

Energy lost during deformation $=1 / 2 \times \mathrm{m} \times(E E S)^{2}$
EES = Energy Equivalent Speed.

Therefore, $(\text { Pre-Impact Speed })^{2}=(\text { Post-Impact Speed })^{2}+$ EES 2

APPLYING LAW OF CONSERVATION OF ENERGY

> Post-Impact Speed $=31.90 \mathrm{~km} / \mathrm{h}$
> EES $=5 \mathrm{~km} / \mathrm{h}($ estimated based on vehicle damage $)$
> $1 / 2 * m_{\text {car }} *(\text { Pre-Impact Speed })^{2}=1 / 2 * m_{\text {car }} *(\text { Post-Impact Speed })^{2}+1 / 2^{*} m_{\text {car }} *$ EES 2
$(\text { Pre-Impact Speed })^{2}=(31.90)^{2}+(5)^{2}=1042.61$

Pre-Impact Speed $=32.29 \mathrm{~km} / \mathrm{h}(8.97 \mathrm{~m} / \mathrm{s})$

CALCULATING SPEED AT START OF BRAKE MARK

CALCULATING SPEED AT START OF BRAKE MARK

- Formula used to calculate the speed of the vehicle from the available brake mark is as follows,

- $v^{2}=u^{2}+(2 \times a \times s)$
$u=$ Initial Speed $=$?
- $(8.97)^{2}=u^{2}+(2 \times-7.85 \times 16)$
- $u^{2}=80.46+251.2$
$a=$ Deceleration rate $=-7.85 \mathrm{~m} / \mathrm{s}^{2}$
average value for full braking
- $u=18.21 \mathrm{~m} / \mathrm{s}$
- $u=65.56 \mathrm{~km} / \mathrm{h}$
$v=$ Final Speed $=8.97 \mathrm{~m} / \mathrm{s}$
$s=$ brake mark length $=16 \mathrm{~m}$;
put these values in formula

CALCULATING SPEED AT START OF BRAKE MARK

SUMMARY OF CALCULATIONS

Calculations

Values
Speeds (kph)

$\boldsymbol{s}_{\mathbf{0}}$ - Post impact distance
$s_{0}=5 \mathrm{~m}$
a - $\mu \times g$ (friction coefficient \times acceleration due to gravity)

$$
a=-7.85 \mathrm{~m} / \mathrm{s}^{2}
$$

V_{0} - Final speed, here, ' 0 ' as the vehicle comes to stop
Calculating pre impact speed, $\boldsymbol{V}_{\mathbf{1}}=\sqrt{ }\left(\boldsymbol{U}^{2}+\boldsymbol{E} \boldsymbol{E} \boldsymbol{S}^{\mathbf{2}}\right)$
U_{0} - Post impact speed
EES - Equivalent Energy Speed (researcher estimation)

$$
\mathrm{EES}=5 \mathrm{kmph}
$$

32.29 ($8.97 \mathrm{~m} / \mathrm{s}$)

Speed at start of tire marks, $V_{2}=\sqrt{ }\left[V_{1}^{2}-\left(2 x a_{b} x s_{1}\right)\right]$
V_{1} - Pre impact speed
a_{b} - Maximum acceleration while braking
s_{1} - Braking distance

$$
s_{1}=16 \mathrm{~m}
$$

31.90
$a=-7.85 \mathrm{~m} / \mathrm{s}^{2}$
($8.86 \mathrm{~m} / \mathrm{s}$)

$$
65.56
$$

REACTION TIME

- Time required from the point of initial detection of the hazard in one's field of view,
- through various stages of evaluation and decision making,
- to the time that vehicle control components are actuated, which includes the time necessary to move hands and feet to the appropriate vehicle controls (such as movement of one's foot to the brake pedal).
- In general, taken as 1 to 2 seconds for a sober and alert driver.

REACTION DISTANCE?

THE CALCULATION RESULTS

RECON VIDEO - 1X SPEED

NOW WATCH THIS AGAIN.

IF CAR TRAVEL SPEED IS 60 KM/H? WHAT WOULD HAPPEN TO THE PEDESTRIAN?

STOPPING DISTANCE:

DISTANCE TRAVELLED DURING REACTION TIME AND BRAKING

Figure 1.2 Illustration of the stopping distance in an emergency braking

Source: (6) adapted from the Australian Transport Safety Bureau

PART 4:
 ROAD TRAFFIC ACCIDENT RECONSTRUCTION BASICS

For any queries or feedback, please contact:
dshelton@adb.org
ravishankar@jpri.in

