

Objective

- To estimate the impact of trade costs on exports in Central Asia using a structural gravity model approach with a CPMM dataset of trade costs.
 - The impact of time-to-export and cost-to-export is calculated for intermediate, final and total exports of aggregated and sector-specific goods in Central Asia and the entire CAREC region.

Rationale

- Landlockedness and remoteness from global markets TRADITIONALLY identified as key impediments to international trade in Central Asia
- However, the CENTRAL POSITION of a country could be AN ADVANTAGE when the economies around it are strong
- Central Asian logistics infrastructure is inefficient and expensive and not affordable for small exporters
- Inadequate soft infrastructure: lengthy border delays due to customs inefficiencies, red tape, etc
- Costs-to-trade, both in money and time terms, are particularly high for perishable commodities
- Lack of literature on the impact of trade costs on cross-border trade in the Central Asian region
- The CAREC CPMM dataset creates an opportunity to close this gap

Structural gravity model

$$X_{ijt} = F_{it}F_{jt}t_{ijt}^{-\theta}e_{ijt}$$
 (1)

Where:

- X_{ijt} is exports from country i to country j in year t
- $F_{it} F_{jt}$ are exporter-year and importer-year fixed effects
- t is trade costs
- θ is a parameter capturing the sensitivity of demand to cost
- *e* is an error term satisfying standard assumptions.

$$t_{ijt} = b_1 time_{ijt} + b_2 cost_{ijt} + D_{ij} * t$$
 (2)

Where:

- $time_{ijt}$, $cost_{ijt}$ are the key cost and time-to-export variables, respectively
- D terms are country-pair fixed effects interacted with a time trend.

Data

Export flows (X_{ijt}) from the Eora26 multi-region input-output table

- Reported in US dollar by total trade, intermediate and final goods
- Contains data on intra-national trade
- Detailed by 26 aggregated sectors

CAREC CPMM Trade cost variables (t_{ijt})

- Total duration of shipment (transit + activities) in hours
- Total cost of shipment (transit + activities) in US dollar terms
- Detailed by sectors

Results: Baseline model with constructed CPMM dataset for Central Asia

Table 1. Impact of trade costs on aggregated exports in Central Asia

	(1)	(2)	(3)	(4)	(5)	(6)
	Total	Final	Intermed	Total	Final	Intermed
Time-to- export	-0.030 **	-0.029 ***	-0.026 *			
	(0.012)	(0.009)	(0.015)			
Cost-to-export				-0.051 **	-0.054 ***	-0.051 **
				(0.020)	(0.019)	(0.024)
Constant	22.962 ***	21.260 ***	22.775 ***	22.964	21.263 ***	22.777
	(0.000)	(0.000)	(0.001)	(0.001)	(0.001)	(0.001)
Observations	245	245	245	245	245	245
pseudoR ²	1.000	1.000	1.000	1.000	1.000	1.000

Fixed Effects: Exporter-Year, Importer-Year, Pair-Year

- Dependent variable: exports
- Regressors: time- and cost-to-export indicators from the constructed CPMM dataset
- Countries in the sample: Central Asian countries, Russia and China
- Estimation results statistically significant, with expected signs
- Exports are more sensitive to cost-to-export than to time-to-export
- 1% increase in time to export --> 0.03% decline in exports value
- 1% increase in cost to export --> 0.05% in exports value

Results: Changed fixed effects sensitivity test

Table 2. Baseline model results (from the previous slide)

	(1)	(2)	(3)	(4)	(5)	(6)
	Total	Final	Intermed	Total	Final	Intermed.
Time-to-export	-0.030 **	-0.029 ***	-0.026 *			
	(0.012)	(0.009)	(0.015)			
Cost-to-export				-0.051 **	-0.054 ***	-0.051 **
				(0.020)	(0.019)	(0.024)
Constant	22.962 ***	21.260 ***	22.775 ***	22.964 ***	21.263 ***	ZZ.111 ***
	(0.000)	(0.000)	(0.001)	(0.001)	(0.001)	(0.001)
Observations	245	245	245	245	245	245
pseudoR ²	1.000	1.000	1.000	1.000	1.000	1.000

Fixed Effects: Exporter-Year, Importer-Year, Pair-Year

Table 3. Sensitivity test of the CPMM TFIs to the changing fixed effects specification

	(1)	(2)	(3)	(4)	(5)	(6)
	Total	Final	Intermed.	Total	Final	Intermed.
Time-to-export	-0.808 **	-0.853 *	-0.889 **			
	(0.389)	(0.436)	(0.359)			
Cost-to-export				-0.926 ***	-0.818 ***	-0.958 ***
				(0.257)	(0.234)	(0.277)
Distance	0.245	0.130	0.271	-0.143	-0.135	-0.100
	(0.225)	(0.211)	(0.245)	(0.243)	(0.269)	(0.234)
Constant	22.996 ***	21.300 ***	22.807 ***	22.997***	21.300 ***	22.809 ***
	(0.001)	(0.002)	(0.001)	(0.002)	(0.002)	(0.002)
Observations	245	245	245		245	245
pseudoR2	0.999	0.999	0.999	0.999	0.999	0.999

- CPMM trade costs variables very sensitive to the "relaxed" estimation techniques
- 'Capture' other factors that impact the exports
- On average, as compared to the baseline model
 - the coefficients for time-to-export are 30 times higher
 - and cost-to-export indicators are 20 times higher
- Therefore, along with export data it is important to have the domestic trade data to use full set of fixed-effects in gravity model
- In the past, some policy recommendations were made based on the 'over-estimated' results

Results: CAREC exports by sectors

Table 5. CPMM TFIs and selected Eora micro sectors exports for CAREC countries

	(1)	(2)	(3)	(4)	(5)	(6)	
		Time-to-expo	rt	Cost-to-export			
	Total	Intermediate	Final	Total	Intermediate	Final	
Agriculture	0.059 ***	0.019	0.076 ***	0.026	-0.135 ***	0.220 ***	
	(0.015)	(0.020)	(0.015)	(0.045)	(0.036)	(0.067)	
Food & Beverages	0.008	-0.020	0.024	-0.055 **	-0.085 ***	-0.043	
	(0.012)	(0.012)	(0.020)	(0.027)	(0.015)	(0.040)	
Textiles & Apparel	0.067 ***	0.006	0.190 ***	-0.008	-0.031 ***	0.034	
	(0.010)	(800.0)	(0.022)	(0.020)	(0.010)	(0.044)	
Wood and Paper	0.130*	0.041	0.141	-0.049***	-0.040 ***	-0.054***	
	(0.069)	(0.036)	(0.088)	(0.003)	(0.004)	(0.002)	
Constant	19.296***	15.934 ***	19.331***	19.377***	16.075 ***	19.400***	
	(0.025)	(0.044)	(0.026)	(0.002)	(0.010)	(0.001)	
Observations	3,024	3,024	3,024	3,024	3,024	3,024	
pseudoR2	1.000	1.000	1.000	1.000	1.000	1.000	

Fixed Effects: Exporter-Year, Importer-Year, Pair-Year

Interpretation

- Some of the estimates have unexpected positive signs
 - An unexpected positive shock to trade creates congestion on the route, which increases reported data
 - Therefore, there can be a positive correlation between trade and the observed time
 - High stnd.deviation of the time-toexport—>high uncertainty
 - Perishable commodities have stronger impact from the cost-to-export
 - 10% increase in cost-to-export could reduce the exports of intermediate (raw, unprocessed) agricultural produce by 1.35%
 - Whereas for intermediate commodities, e.g. cotton, wool or any other type of fibre in the textiles and apparel industry, the same increase would cost only 0.31%

Conclusion

Key findings

- Time-series nature of the CPMM indicators makes it possible to quantitatively estimate the impact of time- and cost-to-export in Central Asian nations.
- The estimates at the aggregated exports level confirmed the suitability of the CPMM indicators for use in the analysis of trade facilitation in Central Asia.
- At the same time, positive results for time-to-export coefficients at the disaggregated exports level suggest a need for careful examination and interpretation of the outcomes.
- Exports of perishable agricultural products were confirmed to be more sensitive to higher trade costs than other commodity groups.
- The CPMM indicators are sensitive to the changing estimation techniques, such as the country-pair fixed effects, which warns researchers to follow the most recent advances in gravity modelling.

Final comments and for future research

- While the potential gains from trade facilitation are undoubtedly significant, the findings of this research suggest that they are not so large compared to the conclusions of similar studies.
- This indicates that policymakers should consider a diversified approach with budget allocations in trade facilitation programs.
- There is a need for better quality data in-country, not only for trade cost indicators but also for internal trade, allowing researchers to apply the best gravity model techniques.
- There is a need for more studies to investigate individual trade facilitation policies on trade performance for specific sectors or commodities.
- Trade facilitation research needs to be extended to analyse general equilibrium response and agglomeration effects on wellbeing in the CAREC region.

