




## Frequency noncompliance in Pakistan

Frequent frequency noncompliance. Load shedding is the current method for load-frequency control.





# Battery Energy Storage System(BESS) for Frequency Regulations



#### Advantages of BESS for frequency regulations

| Type                           | Response time | To full output |
|--------------------------------|---------------|----------------|
| Enhanced frequency reserve via |               |                |
| BESS                           | subsecond     | subsecond      |
| Primary reserve via FGMO*      | 5-10 s        | 30-60 s        |
| Secondary reserve via AGC**    | 30-60 s       | 5 m            |
| Contingency reserve            | 10-15 m       | 30 m           |

- Rapidly decreasing cost of battery
- BESS has been proven for frequency regulation in many countries including UK, USA, Australia, Korea and Germany

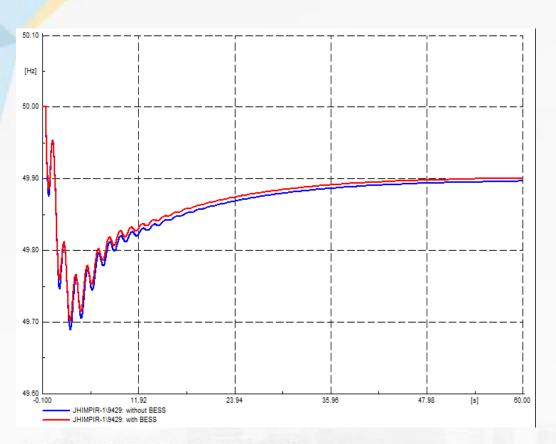
3rd CAREC Energy Investment Forum

\*FGMO: Free governing mode of operation

\*\*AGC: automatic generation control










- ✓ Why: Frequency compliance is the mandatory of NTDC and wind farm IPPs, per Grid Code.
- ✓ Where: NTDC's existing 220 kV Jhimpir-1 substation. Sufficient space and close to Jhimpir cluster wind farms.
- √ What: Lithium- titanium-oxide battery energy storage system 20MW/5MWh (4C):
  - i) EPC+OM (2 years) through contractor;
  - ii) capacity building by consultant including:
    - Preparation of energy system storage roadmap
    - recommendations on grid code revision and development of ancillary services market
- ✓ <u>How</u>: One component of ADB's 2nd Power Transmission Enhancement Investment Program- Tranche 3:
- i) \$4 mil grant from HLTF (\$3 mil for EPC, \$1 mil for capacity building), and around \$3 mil from Tranche 3
  - ii) Tranche 3 (\$280 mil ADB loan+\$4 mil grant) approved in June 2018







The simulations show that after the loss of a 660 MW generation unit, the BESS (20MW/5MWh) results in:

- ✓ a reduction in the postcontingency frequency dip of 0.019 Hz at the bottom (at 3.5 secs) and 0.007 Hz at steady-state (after 60 secs)
- ✓ a general improvement in post-contingency voltage profiles in the HESCO region

3rd CAREC Energy Investment Forum UNLOCKING PRIVATE INVESTMENTS IN HIGH TECHNOLOGY PROJECTS
Batumi, Georgia 11-12 September 2018





















The BESS supplements the load frequency function of the SCADA system being upgraded under Tranche 2





| Date      |
|-----------|
| May 2018  |
| May 2018  |
| May 2018  |
| June 2018 |
| Q4 2018   |
| Q2 2019   |
| Q2 2019   |
| Q4 2019   |
| Q4 2021   |
|           |

3rd CAREC Energy Investment Forum UNLOCKING PRIVATE INVESTMENTS IN HIGH TECHNOLOGY PROJECTS Batumi, Georgia 11-12 September 2018









