Georgia - RAMS

CAREC Transport Coordinating Committee Meeting

Tashkent, Uzbekistan – 25,26 April 2019

Content

- Background
- Timeline
- Current status
- Lessons learned (so far)
- New initiative

Road Network

SOKHU International - 1 600 km Secondary - 5 300 km Local - 13 000 km Kheregeul Total: 20 000 Km

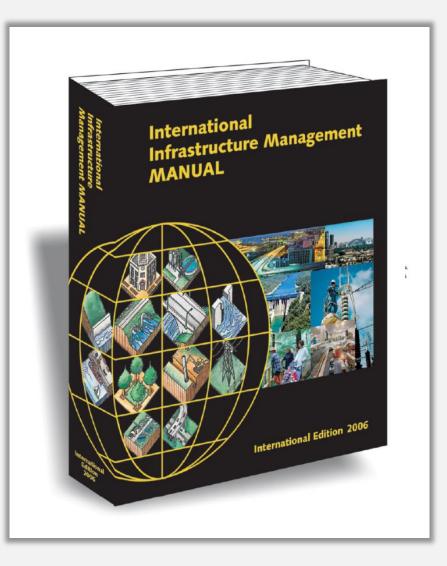
Asset Value

	Lessildze		Anna a st		
Road Network		um Asset nln. USD)		nt Asset nln. USD)	Current/GDP
International	4,505	60%	4,382	67%	26%
Secondary	2,065	28%	1,740	26%	11%
Local	909	12%	458	7%	3%
Total:	7,479	100%	6,580	100%	40%
Source: WB RONET study	under Road Sector	Financing and Institut	ional Strategy Developn	nent Project	Akheikaleki Iminder

Georgia - RAMS

Expenditures

Steady financing resulted in significant decrease in road network backlog. Therefore, now more than ever it's important to improve road asset management trough preventive maintenance and prioritization of works based on economic and social indicators.

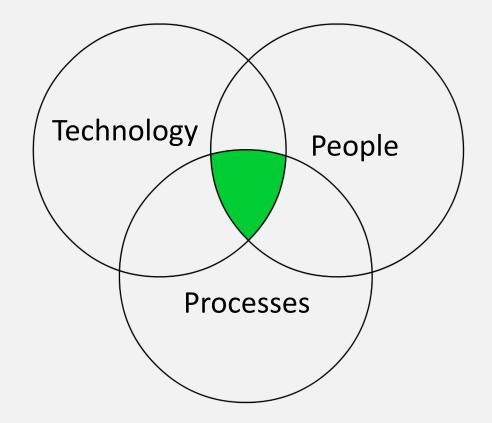


Definition

"The goal of infrastructure asset management is to meet a required level of service, in the most cost effective manner, through the management of assets for present and future customers.

Key elements include:

- Taking a life cycle approach
- Developing cost-effective strategies for the long-term
- Providing a defined level of service quality and then monitoring performance
- Meeting the **needs of growth**
- Managing **risks** associated with failures
- Sustainable use of physical resources

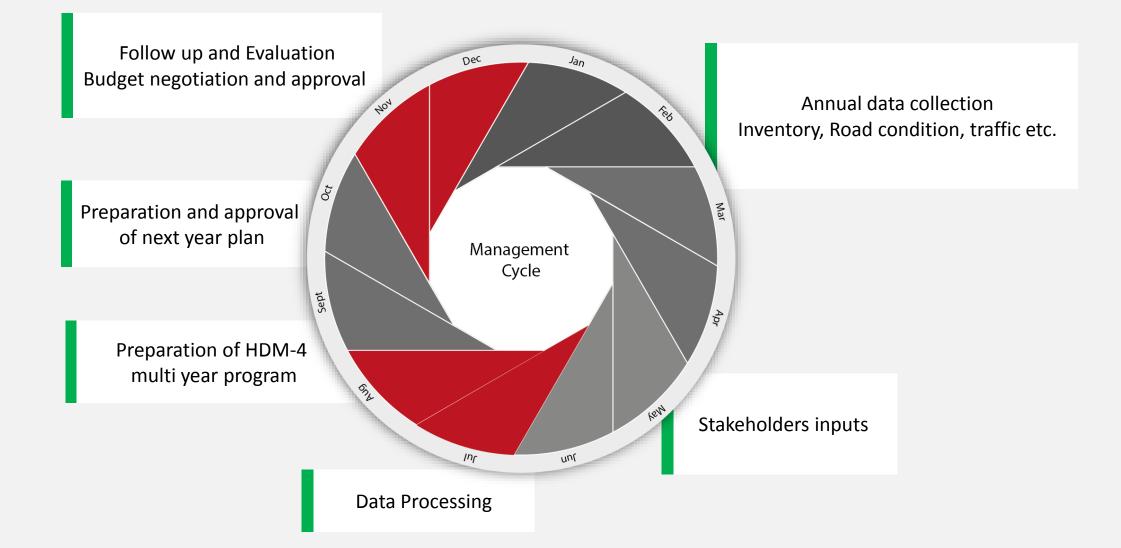


Components

Road asset management systems (RAMS) have two components

- Software to store and process data
- Business processes to use RMS to make decisions

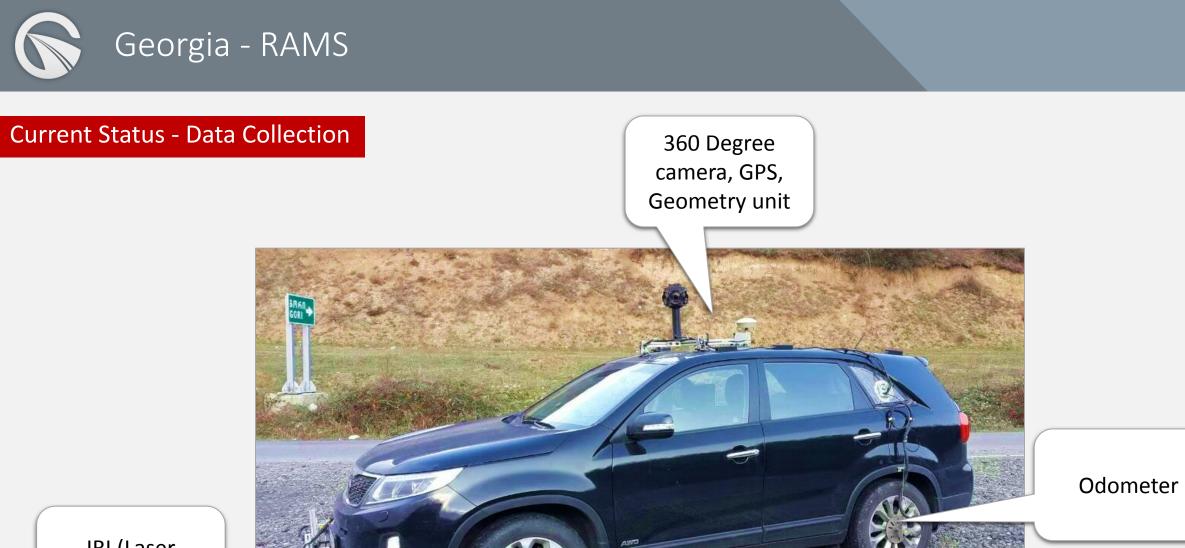
RAMS is only a tool. Without adequate human resources any advanced system will fail.



Timeline

Acquisition of Data collection system IRI + GPS	Acquisition of HDM-4 2.0 and development of planning guideline	Development of 5 year program and respective guidelines/manuals	Data collection equipment upgrade Introduction of
Acquisition of GIS system	Development of network modelling tool	Attempt to procure	social indicators in 5 year plan
Automatic Traffi counters	c Created RAMS unit within Agency	All in one software (data processing, analysis, planning)	Development of TOR for implementing commercial G based advanced linear referencing system

RAMS – Annual Planning Cycle



RAMS – Annual Planning Cycle

- 1. Annual data collection
- 2. Structuring the available data, using GIS data base and Network modelling tool
- 3. Defining Maintenance Strategies and unit costs
- 4. Conducting HDM4, program analysis (life cycle)
- 5. Using the HDM-4 unconstrained solution
- 6. Obtaining the expected RD budget for periodic maintenance and rehabilitation, Using the HDM4 unconstrained budge.
- 7. Assigning non-monetary Indicators using GIS spatial analysis
- 8. Preparation of a 5 year list over the prioritized road project candidates, based on benefit- cost ratio (NPV/C) sorted by year, and population density,
- 9. Preparation of project fact sheets for the selected projects in the first year

IRI (Laser Profilometers)

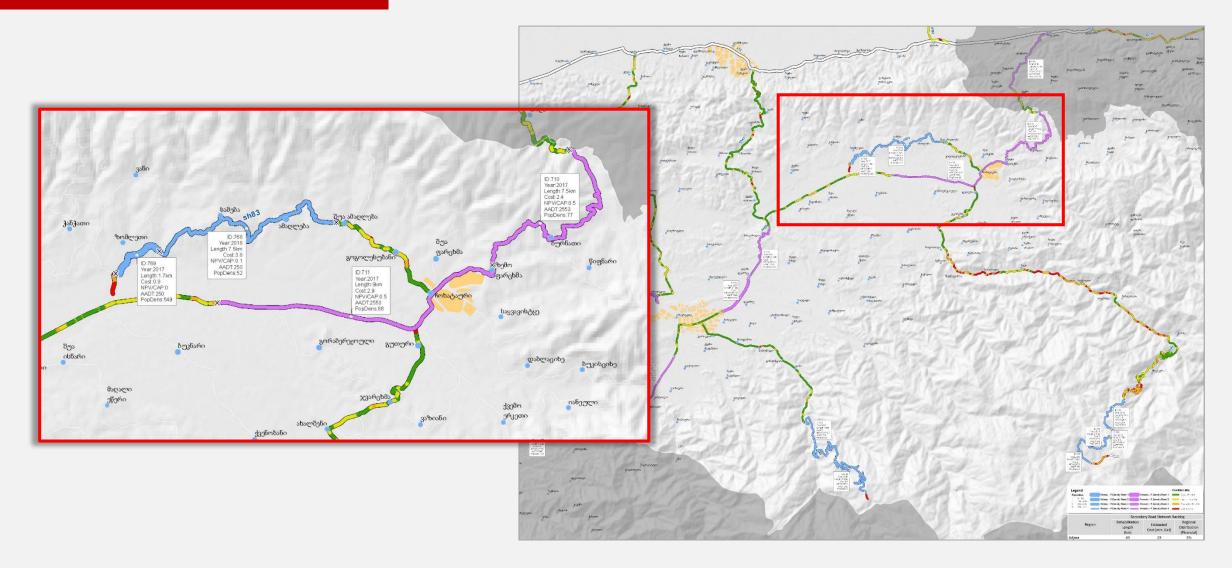
Current Status - Data Processing

t	V HDM-4 Road N Modeling Tool Id Network Traffic Data Surface Distr	0.7b		ort Weight												
Roug	hness 🔗 Rutting 1.2 80 % < 5 mm. 80 %	Deflectio SNP		 Friction > 40 SN 25 % 	Apply					Min Secti	on Length	1				
Good	4 70 % 10 mm. 70 %	6.5 SNP	60.%	40 SN 35%	Terminal IR	I 12	🖌 Enable I	orce Combine		Max Sect	on Length	7				
Fair	6 60 % 20 mm. 60 %	4.5 SNP	70 %	< 25 SN 45%						Interval L	anoth (m)	100				
Poor	8 50 % 30 mm. 50 %	< 1.5 SNP	80 %	••••••••••	ROUGHNESS	SNP	FRICT		RUTTING	in iter var L	ingun (m)	100				Association mondiale
Bad >	8 40 % > 30 mm. 40 %	Count	ID. Road	ID Road Name Sec F	rom Sec Io	SType W	dth AADT	SNP IBI Butti	ng SR Intil	D. MTVeb (MTVeh 1	MTVeb 2	MTVeb 3		HIGHWAY DEVELOPMENT & MANAGEMENT	de la Roure
		1598 -	1 sh01	Batumi-Akha 0	0.1	0 7		.2 4.0 5.89	24. 0	5925	822	373	170	0 4	Version 2	World Road
		726	2 sh01	Batumi-Akha 0.1	0.2	0 7	7290 2	.2 3.9 5.89	24. 0	5925	822	373	170	9	Software for investigating road investment choices	Association
	Abasha-Gagma Kodori-Guleiskiri-Japana	A CONTRACTOR OF	3 sh01	Batumi-Akha 0.2	0.3	0 7		.2 3.5 5.89	24. 0	5925	822					
10000000	Abasha-Martvili	346	4 sh01	Batumi-Akha 0.3	0.4	0 7		.2 3.4 5.89	24. 0	5925	822				Copyright © 2005 The World Road Association (PIARC), Paris, on behalf of the ISOHDM Sponsors. All rights reserved.	
	Senaki-Nokalakevi-Bandza-Khoni Zuqdidi-tsalenjikha-Chkhorotsku-Senak	370	5 sh01 6 sh01	Batumi-Akha 0.4 Batumi-Akha 0.5	0.5	0 7		.2 3.8 5.89 .2 3.8 5.89	24. 0 24. 0	5925 5925	822 822					
	-	1921	7 sh01	Batumi-Akha 0.6	0.0	0 7		.2 3.7 5.89	24. 0	5925	822	373	170			
and the second second		318	8 sh01	Batumi-Akha 0.7	0.8	0 7		.2 3.3 5.89	24. 0	5925	822	373	170	0		NEC
and the second s	Zestafoni-Kitskhi-Kharagauli	208	9 sh01	Batumi-Akha 0.8	0.9	0 7		.2 3.2 5.89	24. 0	5925	822	373	170	0		1 Ora
	2	281	10 sh01	Batumi-Akha 0.9	1	0 7		.2 3.1 5.89	24. 0	5925	822	373	170	0		NO.
sh103	Ianeti-Didi Jikhaishi-Khoni	171	11 sh01	Batumi-Akha 1	1.1	0 7	7290 2	.2 3.9 5.89	24. 0	5925	822	373	170	0 Prod	uct ID: 201195	
sh104	Kutaisi-Geguti-Sakulia-Bashi	336	12 sh01	Batumi-Akha 1.1	1.2	0 7	7290 2	.2 3.4 5.89	24. 0	5925	822	373	170	0 Licer	nce type: Full - Single User Version	
sh105	Vani-Sulori	114	13 sh01	Batumi-Akha 1.2	1.3	0 7	7290 2	.2 5.3 5.89	24. 0	5925	822	373	170		ion: 2.08	
	SuamTa-Chvishi (G. Tabidze Muzeum)															

Georgia - RAMS

Current Status - Life-Cycle Analysis

Define Programm	Perform Run Unconstrained P	rogramme																			
	Budget Scenario: Unconstr	rained Program	nme	•																	
Specify Alternative	Life Cycle Analysis - performe	d at 05-02-2015	5 (costs in	Works Cu	urrency {r	millio	ns of Lari})														
Generate				МТ						B. J. IN B.	ecurrent	Capital Cum									
Programm	Road Section	Road class		AADT	Paveme		Road Wo				ım. Cost	Cust(m#)			F						
Perform Budget	Ponichala-Marneuli-Guguti 67 Ponichala-Marneuli-Guguti 70		3.30 2.30				Rehab(S)(Rehab(S)(-			-	2.43		.18 .09							
_Optimisatio	-	International	0.10				Rehab(S)				-	4.1		.03							
Generate	Tbilisi by Pass 40.0 - 40.5 Tbilisi by Pass 15 - 17.9	International	2.90				Rehab(S)				-	9.2		.04).57							
Reports	-	International	2.30				Rehab(S)				-	8.3).14							
		International	2.20				Rehab(S)				-	10.1		0.13							
	Tbilisi-Senaki-Leselidze 339.		0.10	5239		- 0	r i i	איייטיט	10045	6.03		10.0		100		1					
	Tbilisi-Bakurtsikhe-Lagodekh		1.00	2424 8		ID	ExecYear	RoadI	2	Road	dName		From	То	Length	AADT	FY-AADT	IRI	WorkDescription	NPV/C	AP Cost mln.GEL
		International	2.80	7459 8	Bitumino	1	2013	s01		Tbilisi-Sena	aki-Leselid	ze	225.3	227.6	2.3	12774	10753	4.83	C:Rehabilitation@>DifIRI(LTra) 1.564	0.766
	-	International	2.00	7459 8	Bitumine	2	2013	s01		Tbilisi-Sena	aki-Leselid	ze	194.4	196.7	2.3	11363	9565	5.36	C:Rehabilitation@>DifIRI(LTra) 1.49	0.766
	Tbilisi by Pass 47.2 - 48.8	International	1.60	7459 E	Bituming	3	2013	s04			ed Bridge		6.999	8.999	2.0	13933	11728	5.41	C:Rehabilitation@>DifIRI(
	Mtskheta-Stepantsminda-Lar	International	1.30	2708 E	Bituming	4	2013	s05		Tbilisi-Bakurts	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		24.7	27.199	2.5	8231	6929	6.16	B:Rehabilitation@>DifIRI(
	Tbilisi by Pass 17.9 - 20.4	International	2.50	7450		5	913	s05		Tbilisi-Bakurts		dekhi	22.2	24.7	2.5	8231	6929	6.48	B:Rehabilitation@>DifIRI(
	Ponichala-Marneuli-Guguti 63	3 International	4.30					s09			by Pass		36.7	38.8	2.1	5545	4668	6.76	B:Rehabilitation@>DifIRI(
	Ponichala-Marneuli-Guguti 75	5 International	1.20					s05		Tbilisi-Bakurts			121.8	125.2	3.4	3449	2904	6.69	C:Rehabilitation@>DifIRI(
	Ponichala-Marneuli-Guguti 73		2.80				.3	s05		Tbilisi-Bakurts			31.2	33.2	2.0	8231	6929	5.6	C:Rehabilitation@>DifIRI(
	Ponichala-Marneuli-Guguti 59		3.20		Bitumine	9	2013	s05		Tbilisi-Bakurts	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		19.5	22.2	2.7	8231	6929	5.58	C:Rehabilitation@>DifIRI(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Senaki-Poti-Sarpi 1.1 - 3.9		2.80	6513 E		10	2013	s05		Tbilisi-Bakurts		dekhi	29.199	31.2	2.0	8231 21298	6929	5.31	C:Rehabilitation@>DifIRI(
		International	1.60		Bitumine	11	2013	s04			ed Bridge		1.5	4.3	2.8 2.1		17928	6.02	B:Rehabilitation@>DifIRI		
	Tbilisi-Bakurtsikhe-Lagodekh		3.00		Bitumine	12 13	2013	s09 s09			by Pass		13.1 15.2	15.2 17.5	2.1	2194 2194	1847	16	C:Rehab(S)@IRI>12(LMF		
	Tbilisi-Bakurtsikhe-Lagodekh		3.00		Sittarining	13	2013 2013	s09 s09			by Pass by Pass		24.2	26.8	2.3	2194					
	Tbilisi-Bakurtsikhe-Lagodekh		3.80		Bitumine	14	2013	s09 s03	-	Mtskheta-Step		Larci	117.6	119.7	2.0	991					
	Tbilisi-Bakurtsikhe-Lagodekh		2.90		Bitumine	16	2013	s03		Tbilisi-Sena			312.5	314.7	2.1	3204		Λ.,	cGIS®		
S <u>a</u> ve	Thilisi-Bakurtsikhe-Laandekh	ninternational	2 811	74741	Hituming	17	2013	s01		Ponichala-M			69.6	72.1	2	3970		Чľ	CUID	ArcMan	тм
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18	2013	s08			uri-Vale	Baci	0510	/	_	2314				, in chirdup	
Close	Manual assignment					19	2013	s08			uri-Vale					8	1(	0.1			
01030	Manual assignment				~	20	2013	s08			uri-Vale		1			6					
					m	21	2013	s08	1	Khash	uri-Vale					2328					
a Budget Sce	enario from the list to show its Wo	ork Programme	,			22	2013	s06		Ponichala-M		iguti	83.999	86.499	2	599					
			_	_		23	2013	s05		Tbilisi-Bakurts			131.4	133.9	2.5	3449	In	itializin	g License		
						24	2013	s05		Tbilisi-Bakurts	ikhe-Lago	dekhi	112	115	3.0	3449					Æ
						25	2013	s05		Tbilisi-Bakurts	ikhe-Lago	dekhi	125.2	127.2	2.0	3449					(TA)
						26	2013	s05		Tbilisi-Bakurts	sikhe-Lago	dekhi	129.4	131.4	2.0	3449					
					ľ	27	2013	s05	-	Tbilisi-Bakurts		dokhi	144	146.8	2.8	3449					-




#### Current Status - Automated, Data driven, simple indicators

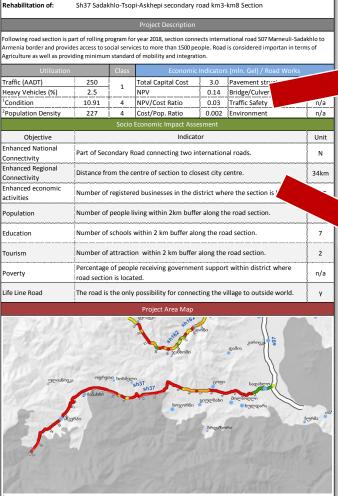
Main Indicators	1	NPV/CAP	Benefits/Capital cost ratio					
	2	Population Density	Total population within 2km buffer / section length					
	1	Enhanced National Connectivity	Part of Secondary Road between, connecting two international roads					
	2	Enhanced Regional Connectivity	Distance from the centre of section to closest city centre					
Secondary Indicators	3	Enhanced economic activities	Number of registered businesses in the district where the section is located					
·	4	Education	Number of schools within a 2 km buffer along the road section					
	5	Tourism	Number of attraction within a 2 km buffer along the road section					
	6	Life Line Road	The road is the only possibility of connecting the village to the outside world					
	7	Rate of poverty	Number of people receiving government support in the district in relation to the district population, where the road section is located					
	1	Emergency Access	Time required from closest city/municipal center to reach populated place					
Custom Indicators	2	Mobility	Total number of villages section provides shortest access to municipal center/city					



#### Multi – Year program visualization



Georgia - RAMS

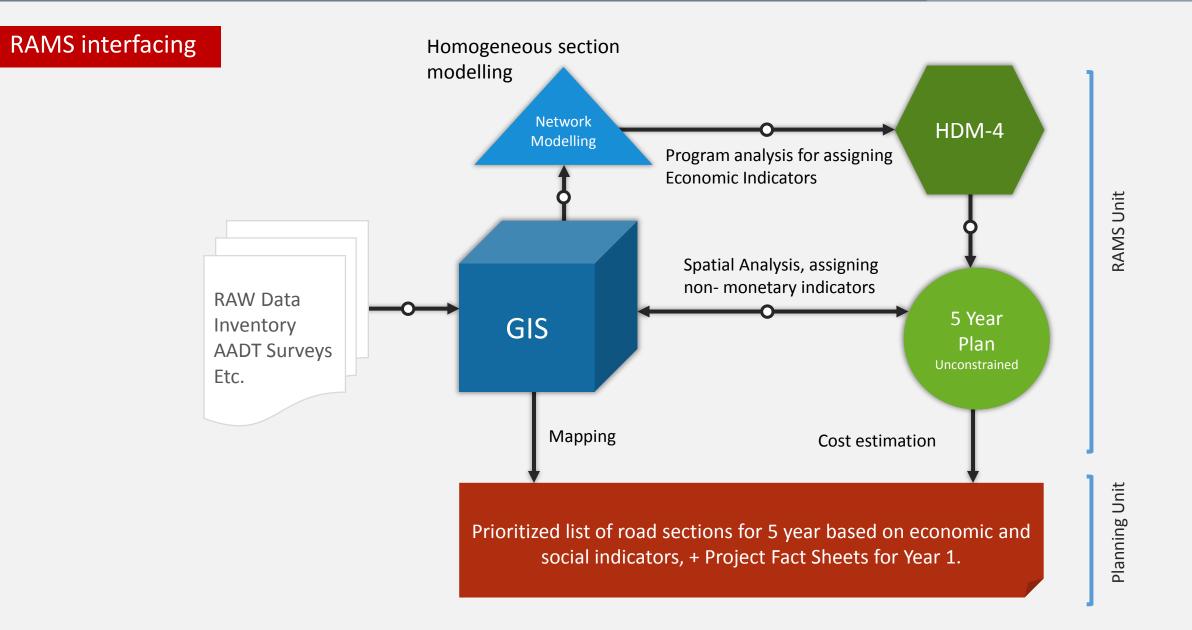

#### Project Fact-Sheet

Project name, description and rationale for prioritization

Main indicators NPV/CAP, Population Density

Secondary Indicators assessing mobility and social impact

Project area map, road condition




Description of Condition Classes (Good, Fair; poor and Bad) is found in Chapter 4, section 1.1 Number of persons/2km buffer from the homogenous section divided by section length

Economic I	Indicators
Total Capital Cost	3.0
NPV	0.14
NPV/Cost Ratio	0.03
Cost/Pop. Ratio	0.002

Part of Secondary Road connecting two international roads.	N
Distance from the centre of section to closest city centre.	34km
Number of registered businesses in the district where the section is located.	347
Number of people living within 2km buffer along the road section.	1520
Number of schools within 2 km buffer along the road section.	7
Number of attraction within 2 km buffer along the road section.	2
Percentage of people receiving government support within district where road section is located.	n/a
The road is the only possibility for connecting the village to outside world.	У

Georgia - RAMS





RAMS as a vital tool for OPRC contract monitoring

# Road Agency must have established RAMS to enable monitoring of performance standards and service Quality Levels.

Georgia OPRC pilot - Laser IRI measurements are carried out for each rehabilitated road section. Requirement is set to Max 2.0 km per any 1km section and max 2.5 per any 100m subsection.

IRI requirements is also set for all road network and linked to the monthly payment adjustments.





#### Lessons learned - Data Collection

# Data collection must be appropriate and sustainable

Only collect:

- The essential data
- At the minimum level of detail
- With the most appropriate technology given the agency's constraints and capabilities
- Agency must have explicit data collection policies and procedures
- There must be strict data QA procedures





#### Lessons learned - Technology

# Focus on combination of commercial off-the-shelf (COTS) software instead of all in one custom solution.

- Lower cost
- Independence many consultants
- Timeframe implemented much faster
- Experience reflects inputs and testing from a larger number of users
- Functionality more functions
- Ongoing development continual upgrades and improvements
- Exchange of ideas conferences and other users





#### Lessons learned - People

## The RMS must be fully institutionalized and supported

To Achieve This:

- There must be an organizational unit to manage, monitor and continually improve the RMS
- Unit must have appropriate staff, clear job responsibilities, sufficient budget, clear reporting lines to upper management
- Continual training and development
- Commitment to continual improvement





#### Lessons learned - Processes

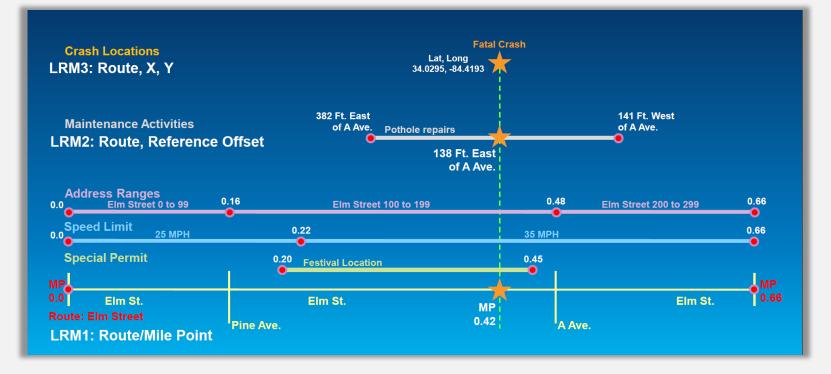
## RAMS must have an active role in the agency

To Achieve This:

- The RMS must be an integral part of the agency's monitoring and planning process
- Have written guidelines for annual cycle of activities
- Outputs should be used to prepare annual reports to ensure data are regularly collected and the system applied

Provide a structured framework for reporting the performance of the agency and plans

Elements typically include


- Key performance indicators
- Five-year goals
- Annual asset management plan

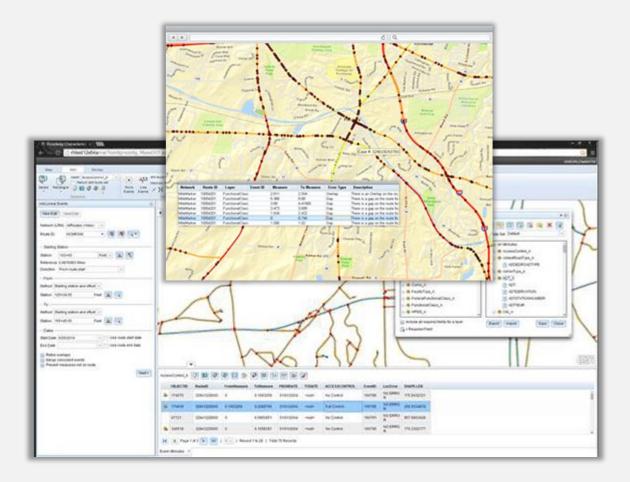




Major functions to be introduced in Georgia RAMS

- Support for Advanced Linear Referencing
- Dynamic Sectioning
- Security, User levels, etc
- Temporal model

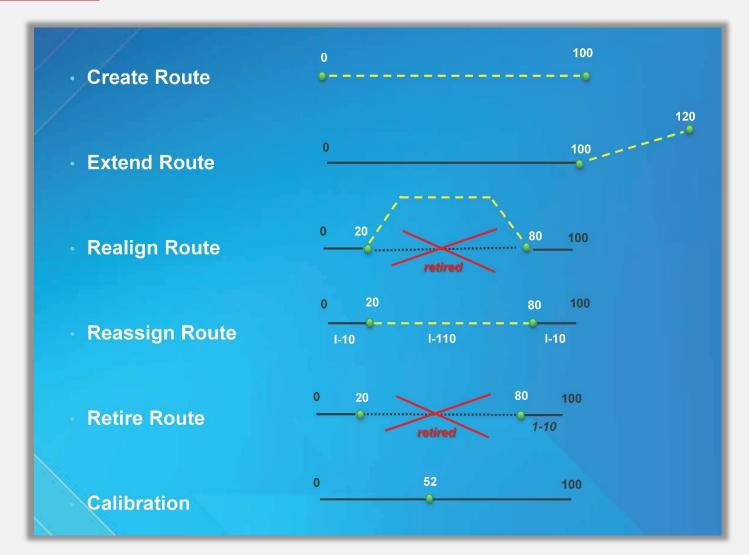





#### ESRI ArcGIS Roads and Highways

Esri ArcGIS Roads and Highways extension is a linear referencing system solution that makes it possible for departments of transportation to integrate data from multiple linear referencing system (LRS) network

Every Public Agency in Georgia with GIS needs is using ESRI ArcGIS system, including Roads Department

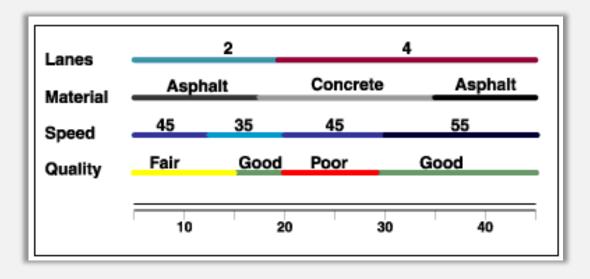

ESRI GIS is an off-shelf commercial software and worldwide standard for GIS solutions





#### Roads and Highways – Linear Referencing

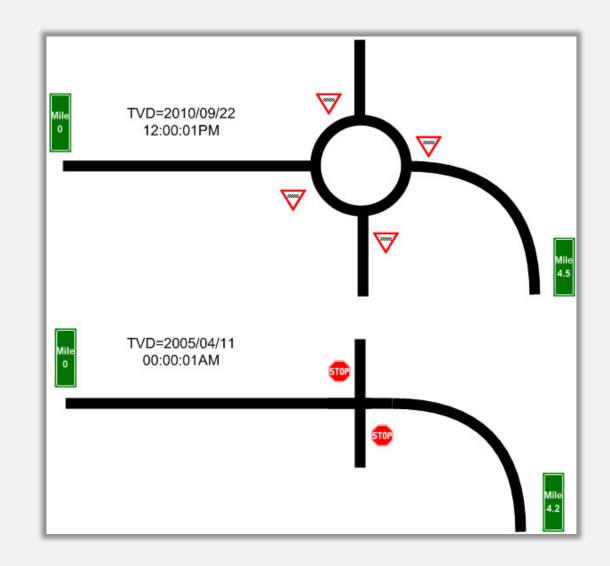
**Esri Roads and Highways** is an example of the new breed of single-source linear referencing system (LRS) maintenance tools. That is, it is designed to update not only the road network but also the linear location of all assets and events associated with that network. The Roads and Highways system works by using the editor to make changes to the roadway network and the system automates the update of linear locations for assets and events. This is a powerful way to maintain locations because one single LRS edit can easily necessitate hundreds of asset location edits.






#### Roads and Highways – Linear Referencing

**Linear referencing** is also used to associate multiple sets of attributes to portions of linear features without requiring that underlying lines be segmented (split) each time that attribute values change.


**LRS** enables production of linear schematic reports.





#### Roads and Highways – Temporal model

**Temporal model**. By entering begin and end dates for each record in your database you can move backward and forward through time to see the state of your LRS at some point in the past and, if you've populated the data for it, see the expected state of the data at some point in the future. This is true for routes as well as events.



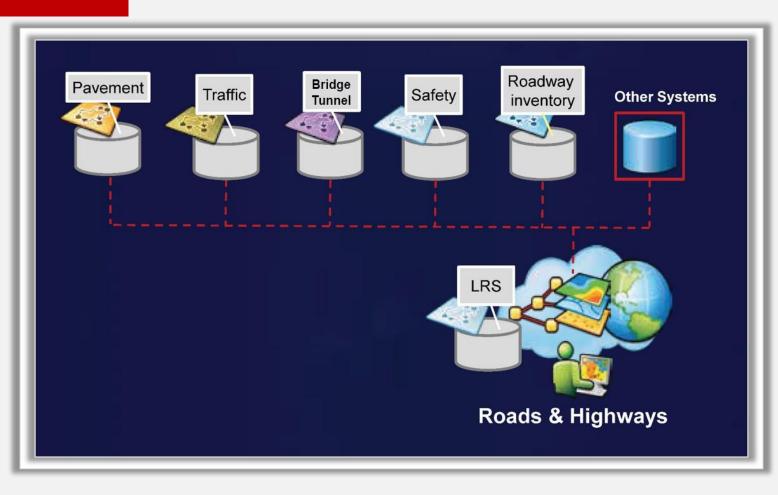


#### Scope of TOR – Action Plan

#### Software Phase I

The provision of ESRI GIS modules and extensions. Roads and Highways, Network analyst, Spatial analyst, 3D analyst extensions.

#### **Hardware Phase I**


Provision of central server equipment and workstations, including equipment for field data collection

#### **Consultancy services Phase I**

Designing Road asset data model, capacity building trough trainings in ESRI GIS server installation, administration, Roads and Highways, Network analyst, Spatial analyst, 3D analyst extensions, Data collection and data quality assurance.

#### Road asset data collection Phase II

Data collection will be carried out on International and Secondary road network.





Thank you