ADB

Floating solar power Plant

APRIL 2017 ADB CWEN, Energy specialist Jung-Kyoon Han

Floating system

Solar module

Mooring

device

Under water cable

HINNH

1. ADB's sustainable values

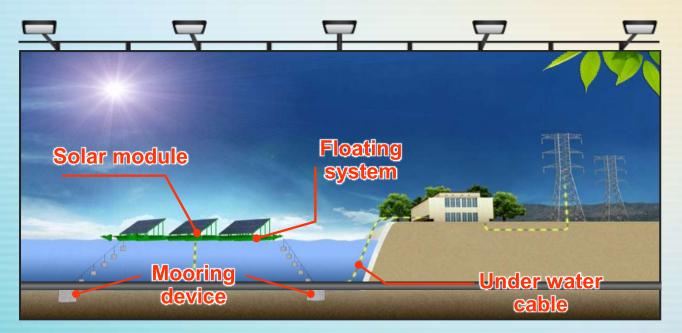
2. Introduction of floating solar power

ASIAN DEVELOPMENT BANK

ADB's sustainable values

ADB Strategies toward High Level Technologies

- New ideas and Innovative technologies
- Protect environment and vulnerable people
- Increase of energy efficiency
- Floating Solar power could be one of solutions



Background in development

- An alternative for a land-based PV system with side effects.
- Causes deforestation, land grab and resettlement issues

Major components of Floating PV system

Core technologies

Solar module adequate for water surface environment

Mooring devices that stabilize the buoyancy tank

Stable floating system

Under water cable that sends the generated electricity

Development history in Korea

• 2.4kW Pilot Plant

100kW demonstration plant

500kW commercial plant

1&2MW solar power plant

Development and construction process

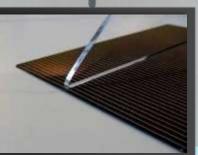
ADB ASIAN DEVELOPMENT BANK

Technical optimization through demonstration plant

- Construction cost down : 30%, Reduction of Construction period : 70%
- The progress of environmental examination and evaluation

Comparison on 100kW and 500kW

Class	100kW Demonstration Plant	500kW Commercial Plant
Scale	67.5m×25m	103.5m x 71.2m
Annual generation	144MWh (Powers 30 households yearly)	657MWh (Powers 155 households yearly)
Generation Facility	- Volume : 100kW - Inverter : 45kW×2 Unit, 10kW×1Unit	- Volume : 500kW - Inverter : 500kW x 1 Unit
Structure	Steel+FRP+AI (H-Beam)	Al (Profile)
Mooring device	Multi-sinker wire suspension	Multi-sinker wire suspension
Design Condition	- Wind speed : 20m/s - Water velocity : 0.5m/s - Wave height : 0.1m	- Wind speed : 30m/s - Water velocity : 0.5m/s - Wave height : 0.1m

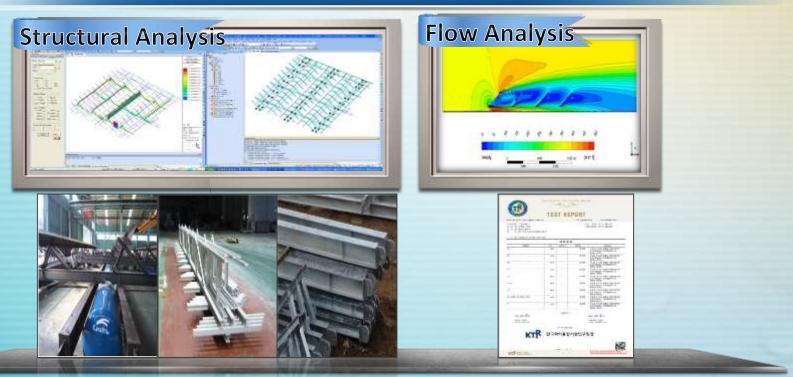

Technical optimization (1)

the module development designed for floating PV plants

tolerance enhancemen

Usage of Pb(lead)-Free type ribbon

Enhancement of water proof level



ADB

ASIAN DEVELOPMENT BANK

Technical optimization (2)

Buoyancy development specified for floating solar power

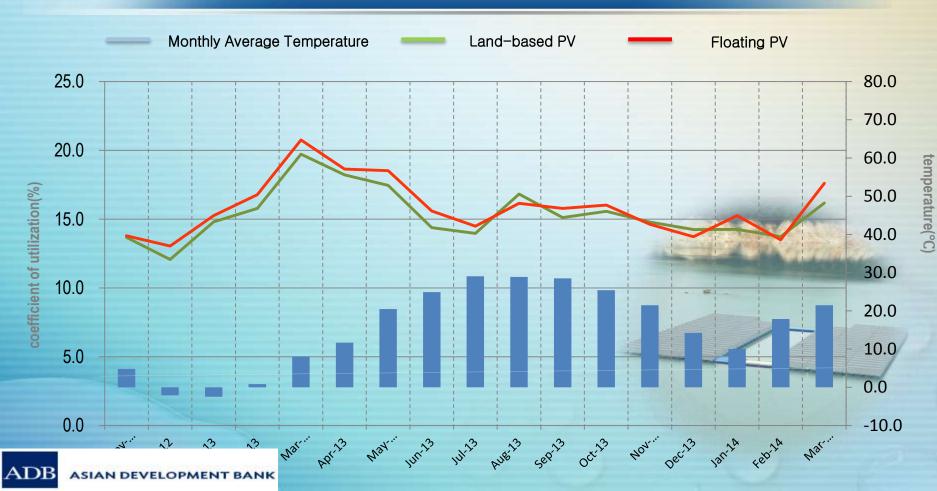
Proven ideal model via application of various materials and design condition Application of environment friendly material

Technical optimization (3)

Development of the mooring device following to water level

Concept picture

response to water level



Technical optimization (4)

10% increase of generation energy

Project specifications

- Capacity : 2MW(completion year : Mar. 2016)
- Project cost : US \$ 5.6 million
- Period : Oct. 2015 Mar. 2016
- Annual energy: 2,781MWh, Plant factor: 15.87%
- Water area occupied
 - -1MW/13,200m^2(114m*114m)

Thanks

14

C