CAREC Knowledge Sharing Program on ICT for Energy (Focusing on Smart Grid, 17-20 April 2017, Seoul)

### KEPCO's Energy Storage System Projects For Frequency Regulation

April 19, 2017





### **1.About KEPCO**

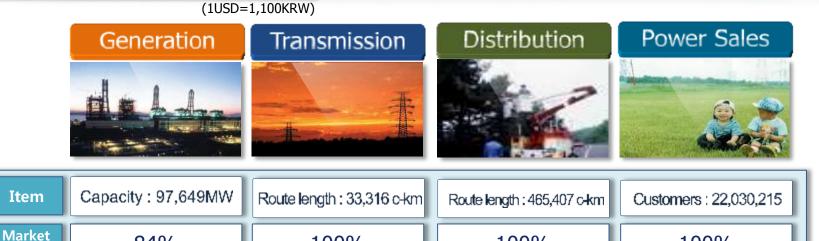
### Smart Energy Creator

#### About KEPCO

| O Total Assets | \$158 billion |
|----------------|---------------|
| Q Revenues     | \$53 billion  |
| Oustomers      | 22,030,215    |
| Employees      | 20,196        |
|                | (             |

84%



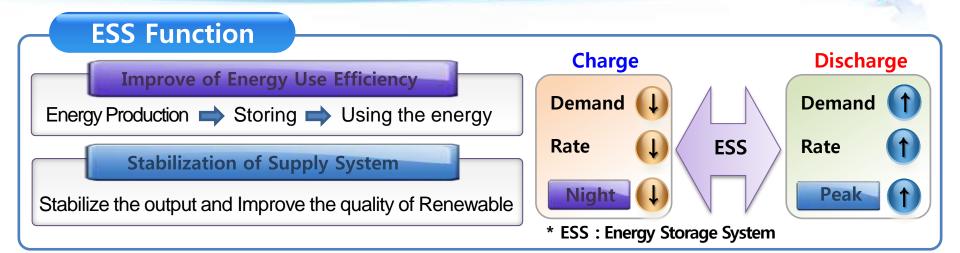

#### **KEPCO Highlight**

As of Dec. 2015

- No1. Electric utility & Global 100 companies of Forbes Global 2000 ('16)
- No1. in the electricity supply sector of World bank's Business Environment survey for 2 consecutive years ('15)

Rated Aa3(Moody's), AA<sup>-</sup>(S&P, Fitch)

100%




100%

100%

share

### 2<sup>-1</sup>. Overview of ESS

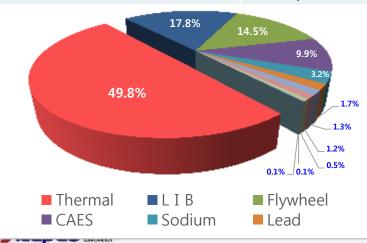


|          | ESS Type                       |                    |                                |                  |
|----------|--------------------------------|--------------------|--------------------------------|------------------|
| Туре     | Pumped Hydro                   | Flywheel           | Compressed Air                 | Battery          |
| Form     |                                |                    |                                |                  |
| Strength | Long Life time,<br>Large Scale | Rapid Response     | Long Life time,<br>Large Scale | High efficiency  |
| Weakness | Environmental<br>Problem       | Short time Operate | Geographical<br>Constraint     | Few Track Record |



# 2<sup>-2</sup>. Overview of ESS

### ESS Usage in T&D


| Item               | Frequency Regulation                                      | Stabilization of Renewable                                                               | Peak Shaving                                                                                             |
|--------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Applying<br>Method | Charge when exceeding fr<br>Discharge when being under fr | Smoothen unstable output from the renewable energy                                       | Charge for off-peak time<br>Discharge for peak time                                                      |
| Concept            | Range of freq.<br>Discharge                               | Out Middle of Middle of Day<br>Discharge<br>Charge Charge<br>Wind Output Wind+ESS Output | Discharge Saving the investment<br>for construction cost<br>Charge<br>Midnight Midday<br>0 12 24<br>Time |
| Usage              | Power Grid<br>[Grid]                                      | [Wind and PV]                                                                            | [Residential & Commercial]                                                                               |



# 2<sup>-3</sup>. Overview of ESS

#### ESS Trend by Type

| Туре       | Number of Site<br>(Country/Site) | Capacity(MW) |
|------------|----------------------------------|--------------|
| Thermal    | 15 / 192                         | 3,205        |
| LIB        | 23 / 314                         | 1,152        |
| Flywheel   | 12 / 40                          | 930          |
| CAES       | 5 / 9                            | 635          |
| Sodium     | 15 / 68                          | 206          |
| Lead       | 16 / 83                          | 109          |
| Capacitor  | 12 / 40                          | 84           |
| Flow       | 21 / 66                          | 74           |
| Nickel     | 3 / 6                            | 30           |
| Hydrogen   | 4 / 8                            | 8            |
| Liquid Air | 1/1                              | 5            |
|            | Total                            | 6,438        |

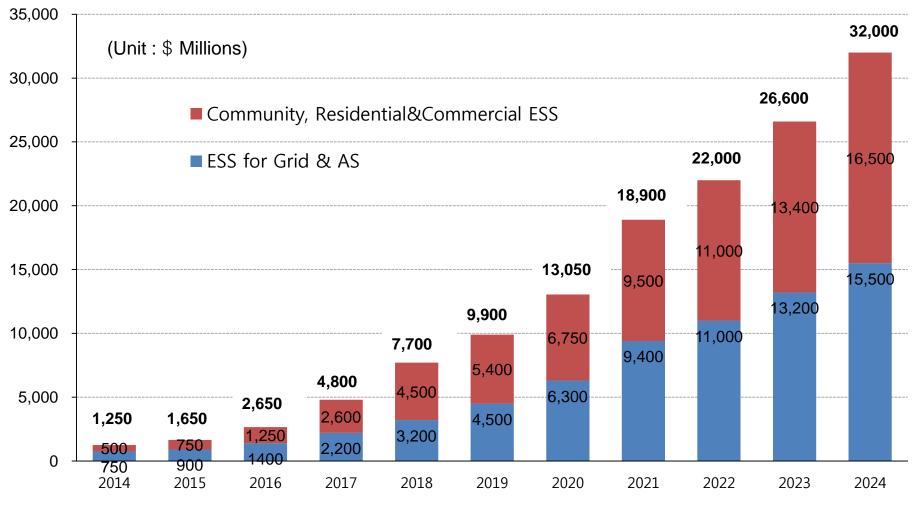




Ref. : DOE GLOBAL ENERGY STORAGE DATABASE (As of July 2016)

<6/18>

# 2<sup>-4</sup>. Overview of ESS


#### ESS Trend by Application

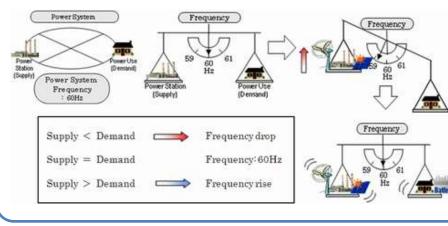
| Appl                                                      | ication                 | Number of Site<br>(Country/Site) | Capacity<br>(MW) |  |
|-----------------------------------------------------------|-------------------------|----------------------------------|------------------|--|
|                                                           | Reserve                 | 13 / 46                          | 198              |  |
| Generation                                                | Renewable               | 31 / 244                         | 3,278            |  |
|                                                           | Black Start             | 9 / 21                           | 347              |  |
| Transmission                                              | F/R                     | 17 / 127                         | 869              |  |
| &                                                         | Voltage Control         | 12 / 19                          | 7                |  |
| Distribution                                              | T&D Deferral            | 8 / 18                           | 25               |  |
|                                                           | Peak Shaving            | 25 / 398                         | 814              |  |
| Consumer                                                  | On-site                 | 13 / 24                          | 860              |  |
|                                                           | Transportation<br>Infra | 7 / 44                           | 39               |  |
|                                                           | Total                   |                                  | 6,438            |  |
|                                                           | Ref. : DOE GLOBA        | L ENERGY STORAGE DA              | TABASE ('16.7)   |  |
| 0.4% 0.1% 0.6% 3.1%<br>13.4% 12.7% 13.4%<br>5.4%<br>51.0% |                         |                                  |                  |  |
| <ul><li>Reser</li><li>F/R</li></ul>                       | -                       |                                  | Black Start      |  |

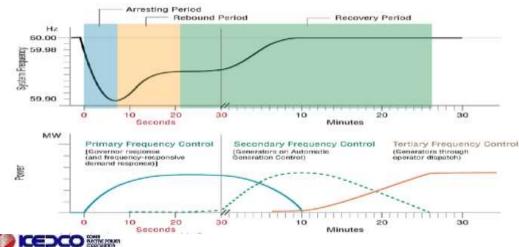




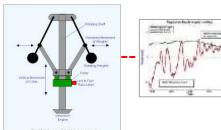
### Global ESS Market Outlook (2014 – 2024)




(Source : Navigant Research 4<sup>th</sup> Quarter Report of 2014)




# **3.What is Frequency Regulation?**


### Frequency Regulation(FR)

 To maintain the power frequency (50 or 60Hz) constantly caused by discrepancy of Supply and Demand to a standard

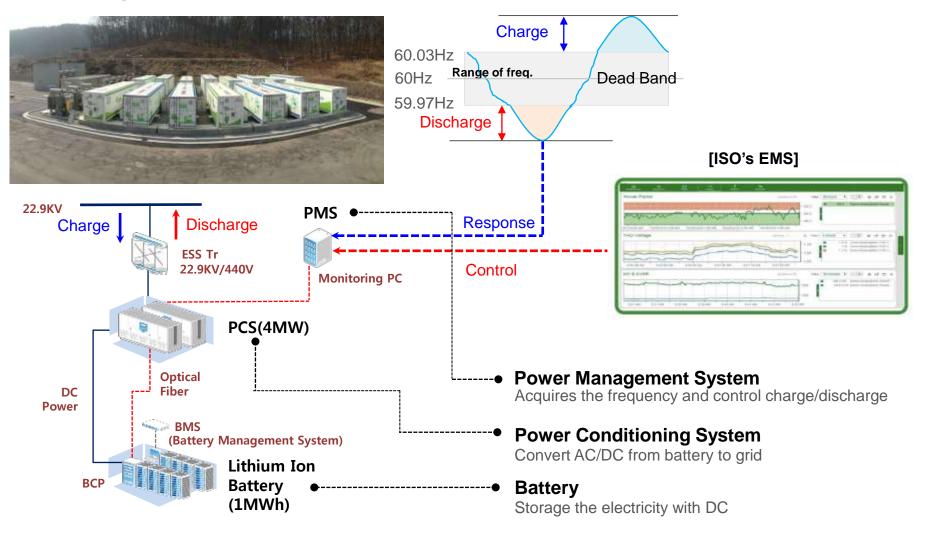




#### How to maintain the frequency






<Governor Free>

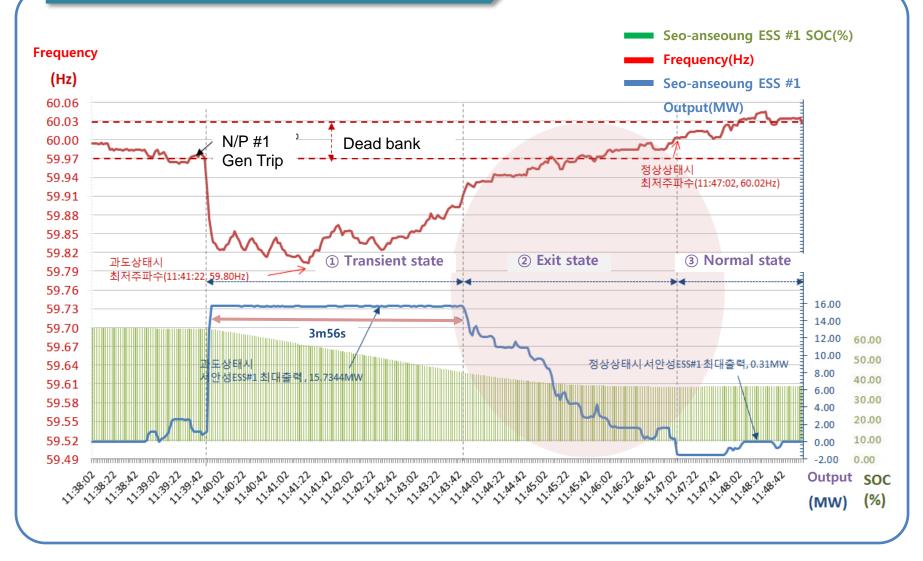




## 4<sup>-1</sup>.KEPCO's FR ESS Project

The Composition and Role of ESS

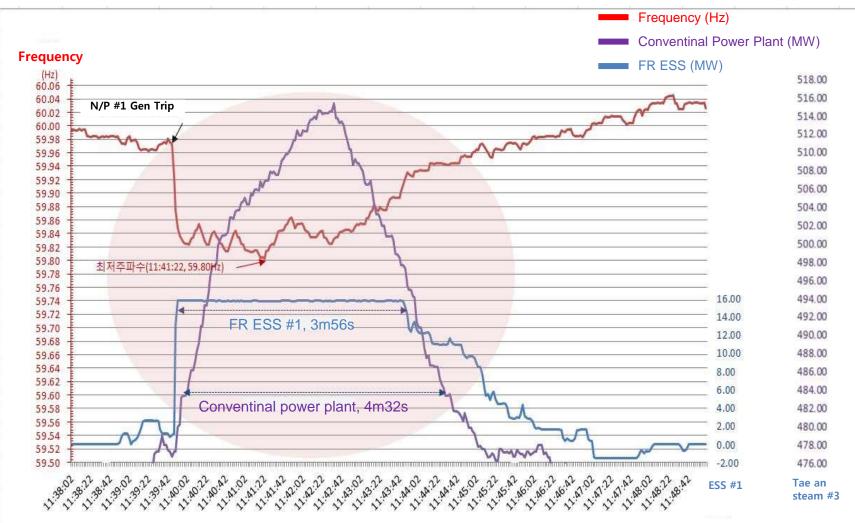





### KEPCO's Pilot Project : 2 Types of FR ESS

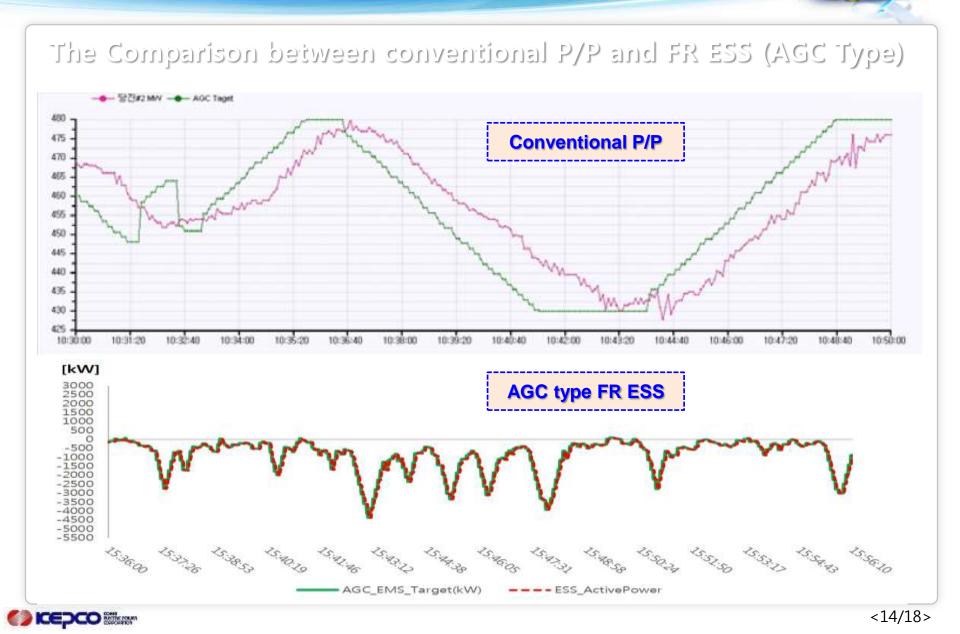
| Item                                  | Primary Frequency Control<br>(Governor Free) | Secondary Frequency Control<br>(Automatic Generation Control)                   |
|---------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|
| Main<br>Purpose                       | Prevent from freq. drop at an early stage    | Increase its output at a signal from ISO's<br>Energy Management System for grid |
| Operation Type                        | Respond by itself based on freq. status      | Ramp up/down by the signal from ISO                                             |
| Pilot<br>Project<br>(52MW)<br>2 sites | 28MW FR ESS<br>(Battery : 12MWh, PCS : 28MW) | 24MW ESS<br>(Battery : 18MWh, PCS : 24MW)                                       |
| Energy Capacity                       | 15 min-Li battery                            | 30 min-Li battery                                                               |
| System<br>Provider                    | (PCS) LS WWOUN   (Battery) Kokam Egeneration | (PCS) EN CALCULATION DUDIES   (Battery) STM SUNF                                |
|                                       |                                              | <11/18>                                                                         |

### 5<sup>-1</sup>.Performance Verification


Hanwul #1 N/P shut down(Jan.10, 2016)






### 5<sup>-2</sup>.Performance Verification

#### The Comparison between conventional P/P and FR ESS (G/F Type)





### 5-3.Performance Verification



# 5<sup>-4</sup>.Performance Verification

#### Pros and Cons of Conventional P/P vs ESS

| <b>Conventional Power Generator</b>                            | Energy Storage                                                  |
|----------------------------------------------------------------|-----------------------------------------------------------------|
| Slow ramp rate                                                 | Very fast ramp rate                                             |
| Limited ramp rating range                                      | Maximum ramp range(3~4 times)                                   |
| Designed to generate                                           | Designed to balance                                             |
| Burns fuel                                                     | No fuel consumption                                             |
| Emit pollutants                                                | No emissions                                                    |
| Consumes water for cooling                                     | No water consumption                                            |
| Unlimited output duration<br>(A fuel is supplied continuously) | Limited output duration<br>(until a charged energy be consumed) |



### Technical Criteria for FR ESS (Tentative)

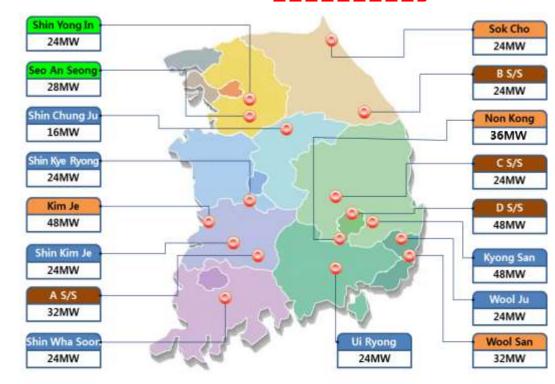
| Classification Standard SOC | Standard | Range of SOC        | Duration time of ESS output |                 |  |
|-----------------------------|----------|---------------------|-----------------------------|-----------------|--|
|                             | SOC      | in normal state     | SOC 100%                    | At standard SOC |  |
| Governor free               | 65%      | Standard<br>SOC±10% | 15min                       | 8~11min         |  |
| AGC                         | 50%      | -                   | 30min                       | 12~18min        |  |

### Advantages of ESS

- Because of its fast, almost instant response it is more effective in providing ancillary service
- Can ramp up and down much faster and easier than conventional P/P
  - Nearly vertical ramp rate, well under 200ms to full output
  - No ramping wear and tear, unlike fossil fuel generator
- No Shut down/startup costs, unlike fossil fuel generator
- Allows generators to focus on producing energy at maximum efficiency
- **Provides enormous flexible ramping capacity** for a given interconnection size

# 7.Project Status and Plan

| ltem     | 2014         | 2015           | 2016         | 2017  | Total |
|----------|--------------|----------------|--------------|-------|-------|
| Capacity | 52mw         | 184мw          | 140мw        | 124mw | 500mw |
| Status   | Commercial C | Operation(236) | Under Const. | Plan  |       |











CEPCO Miliana













<17/18>

# 8.Benefits and Effectiveness

#### Cost reduction

- allows the low cost generator required to be held in reserve to be sold more power
- Spinning reserves can be reduced due to the fast and accurate response

#### Power cjuality

- Increases efficiency and co-optimization of the resources
- Be able to **respond to in milliseconds** to frequency regulation requirement
- Enable to accept even more renewable generation to the system

### Improve reliability

- Can ramp up much faster than conventional P/P when transient situation
- Provide enormous flexible ramping capacity





# Thank for your attention



PAIK, Namgil Director General ESS(Energy Storage System) Team New Business Promotion Department E-mail : namgil.paik@kepco.co.kr

Smart Energy Creator