

TA 9365 Regional Cooperation on Renewable Energy integration to the Grid

TA 9365 Regional Cooperation on Renewable Energy integration to the Grid

Overview

Financed by the Asian Development Bank

Amount : 1.2 millions of US\$

Beneficiary: 7 countries of Central Asia: Afghanistan, Kazakhstan, the Kyrgyz Republic, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan

20 month Technical Assistance (commencement Date : January 2018)

Assistance provided by a French consortium between RTE-International and EDF, leaded by RTE-International, with the participation of CORESO

Background

- Paris Agreement: greenhouse gas emissions reduction
- Important solar & wind generation potential
- Increasing needs in reserve exchange
- Central Asian countries are already almost interconnected

Main Outputs

- Output 1: Grid reinforcement plan, to accept intermittent renewable energy
 - Task a Balancing capacity reserve assessment
 - Task b Dispatching operation practice assessment
 - Task c Policy and sector review
- Output 2: Regional cooperation to share balancing capacity reserve
- Output 3 : Dispatching operation support tool
 - Including implementation of a generation forecasting service for RE in Kazakhstan
- Output 4 : Capacity building

Rte

Approach to services European examples

Rte

- Output 1: Grid reinforcement plan, with intermittent renewable energy
 - Task a Balancing capacity reserve assessment
 - Review of Generation Expansion Plan (with RE development plan)
 - Sizing of reserve requirement for each country
 - Benefit of a reserve regional cooperation framework, by comparison with:
 - standalone reserve management
 - regional reserve management (on selected pool model) interconnection need identification

Output 1: Grid reinforcement plan, with intermittent renewable energy

- Task b Dispatching operation practice assessment
 - Identify state of the art practices in NLDC for RES management, Reserve sharing and market integration
 - ✓ Gap analysis report
 - ✓ Recommendations on necessary tools, training, and regional cooperation organisation

- Output 1: Grid reinforcement plan, with intermittent renewable energy
 - Task c Policy and sector review
 - Thourough regulatory analysis
 - Identification of legal barriers / bottlenecks
 - Recommendations on target regional cooperation organisation and regulatory framework
 - Harmonised grid code

Rte

TA Tasks

Output 2: Regional cooperation to share balancing capacity reserve

- Analysis of possible mechanisms
- Role of the Coordinating Dispatching Center (CDC) in UZB
- Report on regional sharing mechanisms
- 2 workshops at final and interim stage (including one in Europe ?)

Regional sharing mechanisms

- Target sharing mechanisms for the Region or for a group of countries of the Region, including settlement arrangement and pricing rules for the procurement,
- Necessary changes in the countries' grid codes,
- Necessary and recommended institutional arrangements ·,
- SCADA/EMS and communication to support implementation of the mechanisms,
- Necessary investments,
- Tentative step by step schedule

Output 3 : Dispatching operation support tool

Generation Forecasting for intermittent RES

- Feasibility study
- Benchmark
- Specification and procurement
- Trial by KEGOC
- Feedback

- Output 4 : Capacity building
 - Reports
 - 6 workshops and a final conference
 - European experience
 - Recommendations in view of international best practices

OUR TEAM International experts

Pascal Bertolini Power market design specialist

Pierre-Yves Piliero Dispatching operation expert

Sebastien Ayffre Dispatching operation expert

César Clause

System and regional cooperation expert

Renaud Delachaux Reserve procurement and market economist

Ph sc.

Philippe Michal SCADA/EMS expert

Emmanuel Varret *Power development planner*

Hortense Martinez Policy <mark>expert</mark>

OUR TEAM Local experts

Kazakhstan Chokan Pusyrmanov

Uzbekistan

Rustam Davletov

Tajikistan Galina Borisova

Turkmenistan Dovlet Hangeldiyev

Kyrgyz Republic

Kairat Dzhumailev

edf

Afghanistan Abdullelah Rasooli

Pakistan

Ahsan Maqbool

Preliminary findings

Some possible options for Regional Cooperation

Preliminary assumptions for the project

- The "Region" comprising the 7 countries of the project should not be an islanded system. The countries of the Region shall follow trading electricity with neighboring countries (Russia, Iran....)
- Interconnecting all these countries in AC is not realistic (and probably technically unfeasible)
- DC connections (lines or back to back stations) are key to enable a full interconnection of the "Region".
- The consultant proposes 3 options for the Regional Cooperation from limited integration to the creation of a specific synchronous area in the "Region"

International

0

Option 3 : Target for Regional cooperation creation of an independant synchronous area

20

