# **Energy-Water Linkages**

## **Preliminary Diagnostic and Proposed Activities**

Energy Sector Coordinating Committee
CAREC
Almaty, Kazakhstan
March 25-26, 2010

Daryl Fields World Bank



## **Energy Action Plan: Three Strategic Themes**

## **Energy-Water Linkages**

#### **Action Plan Objective**

To strengthen cooperation by integrating energy and water analysis.

#### Why

- Hydropower contributes to the reliability, stability and affordability of an energy system
- Transboudary water management is critical to maximize the value of hydropower to the region's energy sector.

#### How

| Investment                            | Identify consensus projects to improve the rational and effective use of energy and water                        |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Capacity Building & Knowledge Sharing | Enhance integrated energy-water models, analytical tools, and shared databases                                   |
| Policy<br>measures                    | Strengthen Central Asian institutions to lead the dialogue and analysis on rational use of energywater resources |

#### **Immediate Outputs**

- Diagnostic note
- Policy note on institutional strengthening and coordination

# Work To Date: September 2009 Discussions

## WHAT:

- Presentations by regional and international experts
- Roundtable discussion on analytical needs

### WHO:

- Saghit Ibatullin, Chair, EC-IFAS, Central Asia
- Jeff Richey, University of Washington, United States
- Sanjay Pahuja, World Bank, India
- Paul Vassilev, BC Hydro and Power Authority, Canada
- Anatoly Sorokin, Scientific Information Centre, Central Asia
- Roundtable discussion

# What We Heard



- •Improve quality of information
- •Increase access to information
- Ensure use of mathematical models



- Agreed tools for regional analysis are not available
- •Need to use integrated approach and advanced world experience
- Bring together national experts in a regional team



- Use layers of spatial data to integrate across resources
- •Take advantage of emerging public data
- Simulate interactions
- Present results visually

- •Multi-sectoral approach critical to understand trade-offs and motivate inter-ministerial dialogue
- •Data challenges can be overcome



- •Recognize that not all interests can be easily quantified
- •Inclusive process is important in developing, calibrating and quality assuring the model/analysis
- Use simulations to understand trade-offs and system flexibility

- Modeling and analytical tools will be required to understand the energy impact of climate change
- Uncertainty will play and even larger role in managing water and energy

# First Diagnostic

Opportunities exist to strengthen regional analysis of energy-water linkages through:

- Better use of publicly available data, and enhanced data collection and sharing
- ii. Advances in modeling for natural resource management
- iii. Broader and more systematic engagement by experts from all countries
- iv. More focus on needs of end-users and decision-makers
- v. Expanding analytical components especially for energy management, climate change and land-water interactions
- vi. Ensuring transparency and training



First Diagnostic

Phase 1a: Analytical and Modeling Architecture

Phase 1b: "First Generation" Model

What: Establish a consensus view on modeling needs and institutions

**How:** Consultative approach

- Consult on analytical/model architecture and "philosophy"
  - e.g., outputs, modules, management tools, scenarios to meet needs of all users
- Establish a Modeling and Decision Support Technical Working Group (all countries, coordinated by IFAS, all relevant sectors)
- Share current models and analytical tools, and seek opportunities for international exchanges

Output: Recommendations for detailed analytical model enhancement and management

- High priority data needs
- High priority modules that require additional research/development (e.g., energy operations, climate change, socio-economic indicators)
  - Most appropriate modeling platform
- Institutional arrangement for ongoing use, maintenance and sharing of analytics

First Diagnostic

Phase 1a: Analytical and Modeling Architecture

Phase 1b: "First Generation" Model

What: Build a basic basin model using readily available data

**How:** Independent consultant

- Collect data from international, commercial and local (Central Asia) sources
- Develop a dynamic information framework to store and enable overlap of sectoral information
- Roughly simulate impacts of climate change, water productivity and water management
- Hold workshops to share model architecture and results

**Output:** Basic model identifying key resources and linkages; basic simulations for pilot sub-basin

- Warehouse of publicly available data
- Geo-referenced map of primary water infrastructure
  - Basic interactions of hydrology and resources
- Input to recommendations for "second generation" model

# Discussion

- Is the diagnostic accurate?
  - I.e., Need for review of current modeling and analytics; more focus on transparency and information sharing; model more directly linked to user needs
- Is the approach appropriate?
  - First activities focused on (i) consultations on modeling needs; and (ii) "first generation" model?
- For Phase 1a) what suggestions do you have for consultation on modeling needs?
  - Individual interviews followed by workshops?
- For both Phase 1a) and 1b), who would you recommend be invited to:
  - Technical Working Group
  - User advisory group
- Is a sub-committee from ESCC needed?