

The Global Specialist in Power ICT, KEPCO-KDN Introduction of Energy Management System

2017.4.19

Contents

I. KEPCO-KDN & Power Sector of Korea

II. EMS in Korea

I. KEPCO-KDN & Power Sector of Korea

- KDN & KEPCO Group
- The Business Coverage of KDN in Power Sector
- The Power Facilities of Korea
- The Power Grid of Korea

KDN & KEPCO Group

MINISTRY OF POWER & ENERGY

The Business Coverage of KDN in Power Sector

Generation EMS & Power Trade Transmission Distribution Selling							
Telecomm. Infra	OPGW , W	/imax, TRS	OFC, ADSL, HFC				
Li	nkage Lin	Linkage					
Generation IT	EMS & Trade IT	Transmission IT	Distribution IT	Sales IT			
 Facilities supervisory DCS Generation Info. Sys. 	• EMS • SCADA • Power Trading System • REC Trading System	 Substation Automation SCADA&RCC Operation Total GIS T/L Monitoring System 	 Distribution Automation Sys. Transformer Monitoring Sys. Distribution Information Sys. 	· AMI · Billing · Call Center			

Telecommunication - Power Grid SMART GRID

Telecommunication is essential element that realizes intelligent Power Grid It is like a human neuro-system

The Power Facilities of Korea

The Power Grid of Korea

II. Energy Management System in Korea

- What is EMS
- History of EMS in Korea
- Background of EMS Development
- Main Control Center
- Location of Control Center

What is EMS Guarantees reliable operation of nationwide Power System

Features

- International Standard Protocol (DNP3.0, ICCP etc.)
- High reliability and security on electric power grid
- Secure power flow on national and regional grids
- Enhanced operation efficiency
- Optimum utilization of transmission network

Experiences

- EMS R&D for application development (2005~2010)
- * EMS Main Center Implementation in Naju, Korea
- EMS Back-up System Implementation in Cheon-an
- * EMS implementation in Uiwang to monitor Seoul area

History of EMS in Korea

Background of EMS development

Over 30 years,

- Experiences on Large Power System Operation
- Operation and Maintenance Skills on EMS
- Support from advanced IT Technologies in Korea

Development of EMS by Korean Technology

Period	Nov. 2005 ~ Oct. 2010 (5 years)	
Company	KEPCO-KDN	

Next Generation EMS

(Nov. 2011 ~ Oct. 2014)

Main Control Center

KEPCO-KDN developed EMS is in operation from October 18, 2014

- Nationwide credible Power System Operation is guaranteed
- Frequency is maintained at 60Hz ± 0.2Hz by AGC

Location of Control Centers

- Primary Control Center : Naju
- · Backup Control Center : Cheonan
- Seoul Control Center : Uiwang
- 290 RTUs with DNP
- 13 RCC Data Links with ICCP
- · 6,000 Buses
- · 45,000 Analog points
- · 72,500 Status points

III. EMS Features

- Functions of EMS
- EMS Software Architecture
- SCADA (Supervisory Control and Data Acquisition)
- AGC/ED (Automatic Generation Control / Economic Dispatch)
- NA (Network Analysis)
- DTS (Dispatcher Training Simulator)
- Benefits with KDN

Functions of EMS

· Major functions

- SCADA
- Generation Applications
- Network Analysis Applications
- Dispatcher Training Simulator
- Database Modeling Tool
- · Web-based User Interface
- · Renewable Energy Control
- · Dynamic Stability Assessment

EMS Software Architecture

- 16 -

Data acquisition scale

As of Mar 20, 2017

Location	Power	Substation			Tatal	
	Plant	765kV	345kV	154kV	Iotal	
Number	108	5	73	667	853	
Scan rate	2 sec	2 sec	2 sec	4 sec		

Data In/Out	Input (points)	Output	Total	
	Analog	Status	(points)		
From RTU (Direct scan)	7,597	14,878	177	22,652	
From RCC (Data exchange)	13,941	24,146	-	38,087	
Total	21,538	39,024	177	60,739	

SCADA Single-line diagram

Substation diagram

- Layered by voltage level for each substation
- Displays value and direction of flow, bus voltage, circuit breaker status, etc.
- Changes color for limit violated analog values and displays alarm
- Pop-up control display to change analog or digital point, transformer tap, etc.
- Link to adjacent substation display

Power System Overview diagram

- Full diagram of Power System Network
- Different color for each voltage level
- Displays value and direction of flow, bus status and line status
- Decluttering by zoom level
- Link to adjacent substation display

AGC/ED Load Frequency Control

Power demand and supply should be equal at any moment in time

- · Frequency decreases if generation is smaller than the demand
- · AGC controls generators to increase their output and keep the balance

AGC/ED Generation control flow

✤ AGC signals to control generators are sent every 4 sec. interval

- · Targeted AGC set-point is calculated based on current output and ED
- · Economic base point is decided by ED within operating limit

AGC/ED Sample display

Generation Monitoring (Transmission Side)

Information on Generator output and Governor Free status is displayed

· Generators are grouped by fuel type and sorted by unit

발전기 출력현황 (송전단) 🔍			발전단 AGC 송발전단 • 조속기 운전상태			 조속기 운전상태 				
계롱주파수ㅣ	59.982Hz	공급능력	80,170 MW	계롱부하 61,050 MW	공급예비력	19,120MW	운영예비력	14,762MW	운명	예비율 24.2 %
고 리 1 2 3	576 644 1,013	23456	495 • 493 • 495 •	군 산 0 분 당 C1 0 C2 200	울 촌 C1 C2 오 성 파 제 C1	500 763 551 782	i 22 . 4 5	357 • 353 • 353 •	대 청 섬진강	0 0
입 계	3.240	7	509 0	보 령 C1 0	± 0 01	793		326 💿	소양강	0
신고리 1	1,003		2,994	C2 0	포스코 C3	-7		330	안 통	0
2	990	삼천포 1	519	보 산 C1 184	C4	0		327 0	8 8	0
압 개	1,992	28	520 o	C2 19	C5	472		19	의 암	17
월 성 1	666	4	528 😐	<mark>C3</mark> 192	C6	470	연열병합	0.	입이	0
23	613	90	491 0	C4 407	C7	408		-2	주 암	9
4	627		2,551	세종열명압 316	C8	401 🦉	구열병합	10 💿	형 평	58
압계	1,907	981	743	R2 0	C 9	397	전처남부	0	춘천	0
신월성 1	998		0	신인천 B1 379	광교열병합	49		0	초 주	0
입계	2,005	4	838	B2 0	데구그린	399	원일평합	-2		10
한 빛 1	987	Ğ	827	2 2 C1 199 C2 200	열대에너지	v s	산별병합	0	21 24	32
2	979	8 71	3,993	C3 390	승도 열 경 입 스 아/에너 TI	0	주별병합	21 💿		0
3	991	태 안 ;	498	8 🔒 🛛 0	아사브하	741		391	M CI	0
5	971	8	491 0	안동 0	안산도시	0 9	양 스 개	-1 4	재생계	1,213
6	969	4	485		양주열병합	543			-	100
압계	4,899	Ğ	486 🧿	을 산 C1 0	인천공항	0		0	고 전시 가 파	120
한 울 1	963	2	421	C2 0	파주열병합	479	1 25 1	0 2		00
3	989	ğ	0=	C3 0	판교열병합	139	2	0	010	400 88
4	994	e n ¹⁰	0 • 2.881	8 9 C1 0	화성열병합	478	1량진 1	0	PIGCC	0
5	1,000	아 동 1	494 💿	C2 -13	통투전 C1	088	2	0		
입 개	4,913	23	492 •	서 음 4 0 5 0	C2 아산열병합	008 0	통 양 1 2	0	20147	109
유연탄계	20,153	Ĩ.	493 🧿		하남열병합	0	ą	0	22	48
당전 1	493 0	2	495 o 491 o	민자소기 12,475	신오산열병합	0	4	0	4	19
	490 0	ž	486 0	2 9 01 545	모여타개	632	천 1	0 🔺	수력	42
4	408	8 71 8	487 O	C2 533		0.52	2	0 3		0
6	400 0	영 순 2	0	GS당전 C1 433	2	153	3 중 1 2	0 0 7	타계	573

NA Sequence & Data Flow

NA applications can be executed in a Real-time Mode or Study Mode

· And they should run in a pre-defined sequence of application

NA Execution sequence of application in real-time

First, TP and next SE should be executed orderly to check correctness of the electrical network

· After that other applications can be executed by using the SE data

NA Status of transmission flow and bus voltage

Displayed Information

- Displays details on Network Operation
- Generator outputs, information on transmission group flow in metropolitan area are displayed

Display Details

- Power System operating status is displayed on head
- Detailed analog and digital information of generation/substation are displayed
- Information on bus voltage of each substation are displayed in detail
- Information on major transmission group is displayed
 - · Displays North-Bounded branch flow
 - · Visualize value and direction of branch flow

NA Real-time Network Analysis Bus Single Line

Branch MW/Mvar flow and Bus voltage information is displayed for each logical buses

· Users can compare tele-metered values and SE estimated values

DTS (Dispatcher Training Simulator)

SCADA, Generation and NA Applications are integrated to simulate operation

 Provide training function for Normal operation, Contingency case, Fault, Power System Restoration, etc.

Benefits with KDN

Make your people happy by reliable power supply

Save your cost by economic operation of generators

Improve national competitiveness

- Contribute to improvement of national competitiveness
- Provide better service for the people

Your True Partner KEPCO KDN THANK YOU