IEA Caspian Energy Policy Dialogue and Training
Astana, 3 July 2012

IEA Energy Efficiency Indicators
Overview

Nathalie Trudeau
Energy Technology Policy Division
The IEA has a broad range of activities to help countries exploit cost-effective energy efficiency potentials.

Develop more detailed indicators

Sector roadmap development

National roadmap

Enhance regional / technology detail

Evaluate progress on EE recommendations

High-level engagement

Indicators

Scenarios

Technology

Policy
What are energy indicators?

- Any data or information which “indicates” an energy situation or an evolution in the energy situation
 - E.g. oil production, growth in imports, etc.

- However, people usually call energy indicators a ratio between an energy consumption divided by “something”
 - Population, GDP, floor area, etc.

- The most often used energy indicators are:
 - Energy consumption per capita
 - Energy consumption per unit of GDP
All countries and regions experienced a decrease in their energy use per GDP.
What are energy efficiency indicators?

- **Tools**: based on detailed statistics to analyse energy use and efficiency trends.

- Examine impacts of economic activity and structure, income, prices, policies, etc.

- Support national policy-making and are used to shape priorities for future action and to monitor progress.

- Used for estimating CO₂ savings, so a key element of environment policy tool.
Highlights energy efficiency

Policy changes in response to the oil price shocks did more to restrain growth in global energy consumption than policies implemented since the 1990s.
Overview of IEA indicators work

n Establish a harmonised framework for data collection and analysis
 l Harmonisation => Comparability
 l Comparability => Understanding of global trends and drivers

n Produce meaningful cross-country analysis to provide guidance to policy-makers on:
 l Underlying drivers (economic activity & structure, income, prices...)
 l Trends in energy use and CO₂ emissions
 l Energy efficiency opportunities and progress
 l Policy effectiveness
The early days....

- Data for only 11 IEA countries
- Long lags in data availability
- Minimal country involvement
- Low profile in IEA and non-IEA member countries
- Little political support
From 2000....growing interest!

- Increase in countries to 14
- Still long lags in data availability
- Countries more involved, links with ODYSSEE
- 30 years is IEA best-seller
- Growing political interest
Now....everyone’s a fan

- Data for over 20 IEA countries, start to include others
- Lags in data availability reduced
- Significant country involvement and strong co-operation with ODYSSEE
- Key IEA activity - many reports
- Significant political support at highest levels
Progress has been achieved through co-operation

- Member and non-Member countries
- ODYSSEE network
- APEC
- Industrial associations
- WBCSD
- ISO/IEC
- World Bank
- United Nations
- Asia Pacific Partnership
The importance of collaboration

Collect, process, release the necessary detailed statistics
Importance of a dialogue between the three parties for having a better understanding of the needs, expectations as well as problems and issues of the other parties.
Indicators are needed to formulate action plans

And the 1st priority is... Industry!

And the last priority is... Residential!

The extreme situation
Limit the data collection to what is necessary

Priorities depend on many elements: climate (heating vs. cooling), structure of the economy (industry vs. services) size of the country (transport, domestic aviation), energy mix (biomass), electrification rate, GDP/capita, ...
Most countries collect basic energy statistics...
...which can be combined to build energy balances
The importance of energy balances...

WORLD ENERGY BALANCE

- Supply
- Transformation
- Final consumption

Energy dependency

Efficiency of the energy sector

Shares of energy consumption by sector

Worldwide Trends in Energy Use and Efficiency

Key Insights from IEA Indicator Analysis
... and its limits

WORLD ENERGY BALANCE

<table>
<thead>
<tr>
<th>OTHER SECTORS</th>
<th>Coal & Peat</th>
<th>Crude Oil</th>
<th>Oil Products</th>
<th>Gas</th>
<th>Nuclear</th>
<th>Hydro/Geoth/Solar Comb.</th>
<th>Renewables & Waste</th>
<th>Electricity</th>
<th>Heat</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>76.58</td>
<td>-</td>
<td>222.89</td>
<td>418.55</td>
<td>-</td>
<td>6.98</td>
<td>395.81</td>
<td>97.97</td>
<td>2024.19</td>
<td></td>
</tr>
<tr>
<td>Comm. & Pub. Services</td>
<td>28.10</td>
<td>-</td>
<td>107.32</td>
<td>173.79</td>
<td>-</td>
<td>1.15</td>
<td>338.31</td>
<td>32.47</td>
<td>692.67</td>
<td></td>
</tr>
<tr>
<td>Agriculture/Forestry</td>
<td>9.57</td>
<td>0.02</td>
<td>102.97</td>
<td>5.58</td>
<td>-</td>
<td>0.16</td>
<td>36.20</td>
<td>3.36</td>
<td>164.88</td>
<td></td>
</tr>
<tr>
<td>Fishing</td>
<td>0.01</td>
<td>-</td>
<td>5.69</td>
<td>0.02</td>
<td>-</td>
<td>0.03</td>
<td>0.36</td>
<td>0.06</td>
<td>6.17</td>
<td></td>
</tr>
<tr>
<td>Non-specified</td>
<td>26.96</td>
<td>0.21</td>
<td>14.00</td>
<td>35.51</td>
<td>-</td>
<td>6.05</td>
<td>49.64</td>
<td>11.36</td>
<td>149.01</td>
<td></td>
</tr>
</tbody>
</table>

What most countries collect on a regular basis is limited to aggregated levels.

No breakdown by end use:
- space heating
- water heating
- lighting
- cooking
- air conditioning
- appliances

No breakdown by end use and by function of buildings (hospitals, schools, hotels, offices, restaurants, etc.)
The residential sector
What can we learn from the energy balance?

1973

World: 4,676 Mtoe

- Transportation: 23%
- Industry: 33%
- Agriculture: 3%
- Other: 4%
- Non-energy use: 6%
- Residential: 23%
- Natural gas: 14%
- Comb. Renew. and waste: 44%
- Electricity: 9%
- Other: 1%

2008

World: 8,428 Mtoe

- Transportation: 27%
- Industry: 28%
- Agriculture: 2%
- Other: 2%
- Non-energy use: 9%
- Residential: 24%
- Natural gas: 21%
- Comb. Renew. and waste: 40%
- Electricity: 20%
- Other: 5%

Electricity and natural gas account for 41% of global residential energy consumption in 2008; up from 23% in 1973.
More information is required to:

1) understand how energy is used

Most of the growth in residential energy consumption in 18 IEA member countries is attributable to appliances and electronics.
But more information is required to:
2) evaluate the impact of existing energy policies and programmes

Despite growth in population and stock per capita, the policies resulted in reduction in energy consumption

The increase is entirely due to small appliances... but little detailed information exist for this category

Energy consumption from large appliances decreased by 11%
But more information is required to:

3) provide insights on the main factors influencing the trends in energy consumption

In general, higher per capita space heating energy demand – caused by fewer occupants and larger homes – was offset by an improvement in energy efficiency.
But more information is required to:

4) evaluate the role energy efficiency played in restraining the growth in energy consumption

Without savings from energy efficiency, energy consumption in IEA 19 would have been 13% higher in 2006
The challenges in collecting residential data

- Difficulty in obtaining consumption information at the end-use level
- Difficulty in obtaining a better representation of the appliance end-use
- Distinction between rural and urban area is important for some countries
- Quantification of collected/purchased combustible renewables
- Necessity to correct for climate variations
Analysis of the industrial sector
Defining the industrial sector

The industry sector covers the manufacturing sector (the manufacture of finished goods and products), construction and mining and quarrying of raw materials.

Different type of industries

Industry boundaries

It does not include transport-related energy consumption and refineries.
Insights from the energy balance - the manufacturing sector

The industry mix identifies the largest energy consumers within the manufacturing sector.
Energy consumption is only one element of the story

- Energy Balances provides energy consumption
 - By energy source
 - By industry

- Supplementary information are required...
 - Value-added by industry
 - Production level by commodity type

- ... and greater details provide even better indicators
 - Age profile of plant
 - Process type information
 - Specific consumption by process step
 - Primary versus secondary production
Aggregate indicators may be misleading

High intensities of some countries result from the structure of their manufacturing sector
So is the role energy efficiency played in restraining the growth in energy consumption. The savings from energy efficiency accelerated in the last decade.
Again, these indicators hide important information

Specificities of a country/an industry can explain large variations in energy intensity
The IEA developed new disaggregated indicators for energy intensive industries

<table>
<thead>
<tr>
<th>Thermal energy consumption by tonne of clinker</th>
<th>Energy savings potential based on best available technology</th>
</tr>
</thead>
</table>

Energy savings potential (GJ/t cement)

<table>
<thead>
<tr>
<th>Country</th>
<th>Energy saving potential (GJ/t cement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>1.0</td>
</tr>
<tr>
<td>China</td>
<td>2.2</td>
</tr>
<tr>
<td>Russia</td>
<td>0.9</td>
</tr>
<tr>
<td>Canada</td>
<td>1.9</td>
</tr>
<tr>
<td>United States</td>
<td>1.5</td>
</tr>
<tr>
<td>Korea</td>
<td>1.3</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.5</td>
</tr>
<tr>
<td>India</td>
<td>0.6</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>0.8</td>
</tr>
<tr>
<td>Japan</td>
<td>0.4</td>
</tr>
<tr>
<td>Other</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Detailed indicators also provide insights on emission savings potential.

Over 400 Mt CO₂ can be saved by applying best available technology in the iron and steel sector.
There are many issues with data collection, even at the aggregate level

- Different countries using different boundaries and definitions
- Difficulty in detangling the energy used within, and outside, the industry boundaries
- Difficulty in separating fuel used for combustion from fuel used as feedstock
- Difficulty in obtaining data for small plants (e.g. mini paper mills)
- Measurement of combine heat and power (CHP)
- Confidentiality of the information

Data availability and consistency need to be improved in all manufacturing sectors
Energy efficiency indicators - three useful IEA tools
Statistics for energy efficiency indicators - context

- The IEA Ministerial meeting
 - Acknowledge the importance of developing meaningful indicators to support policy development
 - Commit to report data supporting the development of indicators annually through the IEA template

- Requests from member and non-member countries to provide guidance on:
 - What indicators to use
 - How to build these indicators
 - What data are needed to support the development of these indicators

But how to collect the data?
How to gather this information?

Manual on Statistics for Energy Efficiency Indicators

- Will offer a large menu of practices already existing worldwide
- Each practice will be summarised, highlighting the main elements of the methodology used
- Four main category of methods (survey, metering/measuring, modelling, administrative sources)
- Will cover the residential, industry, transport and services sector
Manual on Statistics for Energy Efficiency Indicators

Content of the manual

- Why a manual
- Energy efficiency indicators: what are they?
- The data behind the indicators: how to collect them?
- Collecting what and how for the
 - Residential sector
 - Services sector
 - Industry sector
 - Transport sector
- Validating and disseminating
- Annexes
Manual on Statistics for Energy Efficiency Indicators

Content of sectors’ chapter

- Definition of the sector
- Importance of the sector in term of energy consumption
- Key drivers of energy consumption within each sector
- How to collect the data
- Country examples
The IEA energy efficiency indicators template

Energy Efficiency Indicators Template

<table>
<thead>
<tr>
<th>Country Name</th>
</tr>
</thead>
</table>

MACRO ECONOMIC DATA

COMMODITIES

INDUSTRY

SERVICES

RESIDENTIAL

TRANSPORT

IEA DATA AND AGGREGATE INDICATORS

<table>
<thead>
<tr>
<th>Indicator Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICITY GENERATION</td>
<td>Electricity generation from combustible fuels and efficiencies</td>
</tr>
<tr>
<td>BASIC INDICATORS</td>
<td>Predetermined set of aggregate energy and activity indicators</td>
</tr>
</tbody>
</table>

SUPPORT TOOLS

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER REMARKS</td>
<td>To incorporate comments associated to the data from the individual sheets</td>
</tr>
<tr>
<td>DATA COVERAGE</td>
<td>Generates a graphical summary of data coverage (completed vs. expected)</td>
</tr>
<tr>
<td>SINGLE INDICATOR GRAPHS</td>
<td>To generate a graph for one energy indicator</td>
</tr>
<tr>
<td>MULTIPLE INDICATOR GRAPHS</td>
<td>To generate a graph comparing trends from multiple indicators</td>
</tr>
<tr>
<td>CONSISTENCY CHECKS</td>
<td>To run the integrated consistency checks</td>
</tr>
</tbody>
</table>

Worldwide Trends in Energy Use and Efficiency

Key Insights from IEA Indicator Analysis
The IEA template:

1) provides a starting point for collecting important data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil & Petroleum Products PJ</td>
<td></td>
<td>305.42</td>
<td>323.61</td>
<td>268.04</td>
<td>294.10</td>
<td>286.82</td>
<td>266.66</td>
<td>282.15</td>
<td>294.44</td>
<td>273.55</td>
<td>274.13</td>
<td>308.58</td>
<td>304.07</td>
</tr>
<tr>
<td>Combust. Renewables & Waste PJ</td>
<td></td>
<td>281.18</td>
<td>282.33</td>
<td>283.59</td>
<td>284.08</td>
<td>267.69</td>
<td>266.24</td>
<td>267.03</td>
<td>266.65</td>
<td>266.43</td>
<td>264.60</td>
<td>263.24</td>
<td>262.08</td>
</tr>
<tr>
<td>Electricity PJ</td>
<td></td>
<td>106.72</td>
<td>114.08</td>
<td>126.14</td>
<td>150.08</td>
<td>130.64</td>
<td>140.52</td>
<td>143.50</td>
<td>148.64</td>
<td>153.11</td>
<td>160.03</td>
<td>165.01</td>
<td>170.83</td>
</tr>
<tr>
<td>Other PJ</td>
<td></td>
<td>0.73</td>
<td>0.82</td>
<td>0.91</td>
<td>1.04</td>
<td>1.24</td>
<td>1.38</td>
<td>1.80</td>
<td>1.77</td>
<td>2.02</td>
<td>2.28</td>
<td>2.69</td>
<td>3.20</td>
</tr>
<tr>
<td>Total PJ</td>
<td></td>
<td>719.82</td>
<td>740.51</td>
<td>715.56</td>
<td>731.15</td>
<td>715.67</td>
<td>716.03</td>
<td>732.73</td>
<td>725.89</td>
<td>726.55</td>
<td>726.80</td>
<td>702.44</td>
<td>770.08</td>
</tr>
</tbody>
</table>

Space Heating

Oil & Petroleum Products PJ													
Natural Gas PJ													
Combust. Renewables & Waste PJ													
Electricity PJ													
Total (climate corrected for 1990-2007)PJ	#/A												

Space Cooling

| Electricity PJ | | | | | | | | | | | | | |
| Total (climate corrected for 1990-2007)PJ | #/A |

Water Heating

Oil & Petroleum Products PJ													
Natural Gas PJ													
Total PJ													

Cooking

Oil & Petroleum Products PJ													
Natural Gas PJ													
Combust. Renewables & Waste PJ													
Electricity PJ													
Total PJ													

Lighting

| Electricity PJ | | | | | | | | | | | | | |
| Total PJ | | | | | | | | | | | | | |
The IEA template:

2) helps identifying data gaps and issues

A	B	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W			
85	Total	PJ	0	0	0	0	0	55.67	55.36	56.92	57.84	61.15	63.15	65.08										
86	Diffusion	unit/dw	0	0	0	0	0	0.78	0.77	0.76	0.77	0.62	0.83	0.84										
87	Stock	10^6	0	0	0	0	0	19.14	19.31	19.48	19.91	21.79	22.14	22.49										
88	Unit energy consumption	kWh/unit	0	0	0	0	0	0.80	0.80	0.81	0.81	0.78	0.79	0.80										
89	Total (calculated as stock * UEC)	PJ	#/A	#/A	#/A	#/A	#/A	0.05	0.05	0.09	0.09	0.06	0.06	0.07										
90	Clothes Washers	PJ	0	0	0	0	0	5.06	5.26	5.47	5.65	6.01	5.46	4.49										
91	Total	PJ	0	0	0	0	0	12.64	13.07	13.59	14.17	15.37	15.94	16.30										
92	Diffusion	unit/dw	0	0	0	0	0	0.88	0.59	0.59	0.52	0.56	0.59	0.52										
93	Stock	10^6	0	0	0	0	0	14.22	14.75	15.29	15.98	17.59	18.00	14.02										
94	Unit energy consumption	kWh/unit	0	0	0	0	0	0.80	0.10	0.10	0.10	0.09	0.10	0.10										
95	Total (calculated as stock * UEC)	PJ	#/A	#/A	#/A	#/A	#/A	#/A	0.01	0.01	0.01	0.01	0.01	0.01	0.00									
96	Television/Home entertainment	PJ	0	0	0	0	0	12.64	13.07	13.59	14.17	15.37	15.94	16.30										
97	Total	PJ	0	0	0	0	0	12.64	13.07	13.59	14.17	15.37	15.94	16.30										
98	Diffusion	unit/dw	0	0	0	0	0	1.91	2.00	2.10	2.27	2.50	2.49	2.48										
99	Stock	10^6	0	0	0	0	0	16.78	50.26	53.74	58.49	66.28	66.32	66.40										
100	Unit energy consumption	kWh/unit	0	0	0	0	0	0.80	0.03	0.03	0.03	0.03	0.03	0.02										
101	Total (calculated as stock * UEC)	PJ	#/A	#/A	#/A	#/A	#/A	#/A	0.01	0.01	0.01	0.01	0.01	0.01	0.00									
102	PC/Information & communication technology	PJ	0	0	0	0	0	0.23	0.37	0.41	0.44	0.48	0.54	0.59										
103	Total	PJ	0	0	0	0	0	0.23	0.37	0.41	0.44	0.48	0.54	0.59										
104	Diffusion	unit/dw	0	0	0	0	0	0.22	0.31	0.40	0.45	0.50	0.46	0.43										
105	Stock	10^6	0	0	0	0	0	5.48	7.85	10.29	11.70	13.27	12.77	11.47										
106	Unit energy consumption	kWh/unit	0	0	0	0	0	0.02	0.01	0.01	0.01	0.01	0.01	0.01										
107	Total (calculated as stock * UEC)	PJ	#/A	#/A	#/A	#/A	#/A	#/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00									
108	Other Appliances	PJ	0	0	0	0	0	15.16	15.47	16.77	16.28	17.52	17.49	17.32										
109	Total	PJ	0	0	0	0	0	15.16	15.47	16.77	16.28	17.52	17.49	17.32										
110	Total Appliances	PJ	0	0	0	0	0	58.27	99.12	92.06	94.35	90.63	92.49	94.17										
The IEA template:
3) helps developing recommendations for data collection and indicators development

- As a starting point, country should collect the information requested in the template.
- “Development of Energy Efficiency Indicators in Russia” provides detailed indicators that can be built with these data.
- Development of such indicators help assessing the priority areas for further development.
- But more information is required to better support the development of energy policies.
The pyramid approach helps countries defining their data collection strategies:

- **Aggregated indicators**
 - e.g. E/GDP

- **Disaggregated indicators**
 - e.g. sectoral energy intensity
 - e.g. end-use energy intensity

- **Process / appliance indicators**
 - e.g. unit energy consumption

- **IEA Statistics**
- **IEA indicator database**
- **Limited IEA indicators**

This framework assists in organizing and prioritizing the data collection efforts for energy efficiency and use trends worldwide.
The pyramid approach for the passenger transport segment

Level 1: Energy use by passenger-kilometres.

Level 2: Energy use by mode by passenger-kilometres.

Level 3: Energy use by vehicle type by passenger-kilometres.

Level 4: Energy use by LDV type by passenger-kilometres.

Level 5: Energy use by fuel type by passenger-kilometres
Fuel economy per vehicle.

The structure of the pyramids depends on countries specificities...
A common understanding

- Why it is important for policy makers to have relevant indicators
- Which indicators analysts should build and use
- How to collect the proper end-use energy and activity data
- Gaps, barriers and solutions
- Benefits of harmonisation and role of organisations
Key messages from IEA indicators work

- Energy efficiency can contribute to all the main goals of energy policy
 - Economic growth
 - Energy security
 - Environmental protection

- Energy efficiency has shown sustained improvement over many years
 - Results are often not visible, as offset by other factors
 - Rate of improvement needs to be substantially increased

- Energy efficiency is the single most important option to reduce CO₂ emissions in the future
 - Often low cost and relatively quick to implement
 - Can buy time for less mature technologies to be developed
 - Barriers remain, but these can be overcome by effective policies
 - Requires Worldwide Implementation Now
You can contact our indicators team for more information

data@iea.org